IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v119y2009i2p392-401.html
   My bibliography  Save this article

Makespan minimization for a 2-stage assembly scheduling problem subject to component available time constraint

Author

Listed:
  • Sung, Chang Sup
  • Juhn, Jaeho

Abstract

This paper considers a 2-stage assembly flowshop scheduling problem where each job is assembled with two types of components and makespan is the objective measure. For the assembly, one type of the components is outsourced subject to job-dependent lead time but the other type is fabricated in-house, at the first stage. The problem is shown to be NP-complete in the strong sense. Some solution properties are characterized, based on which three heuristic algorithms are derived. A branch-and-bound algorithm is also derived by use of the associated three lower bounds and several dominance properties. Numerical experiments are conducted to evaluate the performances of the proposed branch-and-bound and heuristic algorithms.

Suggested Citation

  • Sung, Chang Sup & Juhn, Jaeho, 2009. "Makespan minimization for a 2-stage assembly scheduling problem subject to component available time constraint," International Journal of Production Economics, Elsevier, vol. 119(2), pages 392-401, June.
  • Handle: RePEc:eee:proeco:v:119:y:2009:i:2:p:392-401
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(09)00094-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kovalyov, M. Y. & Potts, C. N. & Strusevich, V. A., 2004. "Batching decisions for assembly production systems," European Journal of Operational Research, Elsevier, vol. 157(3), pages 620-642, September.
    2. Bertrand, J. W. M. & Muntslag, D. R., 1993. "Production control in engineer-to-order firms," International Journal of Production Economics, Elsevier, vol. 30(1), pages 3-22, July.
    3. Chung-Yee Lee & T. C. E. Cheng & B. M. T. Lin, 1993. "Minimizing the Makespan in the 3-Machine Assembly-Type Flowshop Scheduling Problem," Management Science, INFORMS, vol. 39(5), pages 616-625, May.
    4. Kolisch, Rainer, 2000. "Integration of assembly and fabrication for make-to-order production," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 335, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    5. C. N. Potts & S. V. Sevast'janov & V. A. Strusevich & L. N. Van Wassenhove & C. M. Zwaneveld, 1995. "The Two-Stage Assembly Scheduling Problem: Complexity and Approximation," Operations Research, INFORMS, vol. 43(2), pages 346-355, April.
    6. Sun, Xi & Morizawa, Kazuko & Nagasawa, Hiroyuki, 2003. "Powerful heuristics to minimize makespan in fixed, 3-machine, assembly-type flowshop scheduling," European Journal of Operational Research, Elsevier, vol. 146(3), pages 498-516, May.
    7. Kolisch, R., 2000. "Integration of assembly and fabrication for make-to-order production," International Journal of Production Economics, Elsevier, vol. 68(3), pages 287-306, December.
    8. Sung, C.S. & Kim, Hyun Ah, 2008. "A two-stage multiple-machine assembly scheduling problem for minimizing sum of completion times," International Journal of Production Economics, Elsevier, vol. 113(2), pages 1038-1048, June.
    9. Lin, B.M.T. & Cheng, T.C.E. & Chou, A.S.C., 2007. "Scheduling in an assembly-type production chain with batch transfer," Omega, Elsevier, vol. 35(2), pages 143-151, April.
    10. Hariri, A. M. A. & Potts, C. N., 1997. "A branch and bound algorithm for the two-stage assembly scheduling problem," European Journal of Operational Research, Elsevier, vol. 103(3), pages 547-556, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Framinan, Jose M. & Perez-Gonzalez, Paz & Fernandez-Viagas, Victor, 2019. "Deterministic assembly scheduling problems: A review and classification of concurrent-type scheduling models and solution procedures," European Journal of Operational Research, Elsevier, vol. 273(2), pages 401-417.
    2. Lee, Wen-Chiung & Shiau, Yau-Ren & Chen, Shiuan-Kang & Wu, Chin-Chia, 2010. "A two-machine flowshop scheduling problem with deteriorating jobs and blocking," International Journal of Production Economics, Elsevier, vol. 124(1), pages 188-197, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Framinan, Jose M. & Perez-Gonzalez, Paz & Fernandez-Viagas, Victor, 2019. "Deterministic assembly scheduling problems: A review and classification of concurrent-type scheduling models and solution procedures," European Journal of Operational Research, Elsevier, vol. 273(2), pages 401-417.
    2. Niloy J. Mukherjee & Subhash C. Sarin & Daniel A. Neira, 2023. "Lot streaming for a two-stage assembly system in the presence of handling costs," Journal of Scheduling, Springer, vol. 26(4), pages 335-351, August.
    3. Koulamas, Christos & Kyparisis, George J., 2007. "A note on the two-stage assembly flow shop scheduling problem with uniform parallel machines," European Journal of Operational Research, Elsevier, vol. 182(2), pages 945-951, October.
    4. Hatami, Sara & Ruiz, Rubén & Andrés-Romano, Carlos, 2015. "Heuristics and metaheuristics for the distributed assembly permutation flowshop scheduling problem with sequence dependent setup times," International Journal of Production Economics, Elsevier, vol. 169(C), pages 76-88.
    5. Fernandez-Viagas, Victor & Talens, Carla & Framinan, Jose M., 2022. "Assembly flowshop scheduling problem: Speed-up procedure and computational evaluation," European Journal of Operational Research, Elsevier, vol. 299(3), pages 869-882.
    6. Al-Anzi, Fawaz S. & Allahverdi, Ali, 2007. "A self-adaptive differential evolution heuristic for two-stage assembly scheduling problem to minimize maximum lateness with setup times," European Journal of Operational Research, Elsevier, vol. 182(1), pages 80-94, October.
    7. Sung, C.S. & Kim, Hyun Ah, 2008. "A two-stage multiple-machine assembly scheduling problem for minimizing sum of completion times," International Journal of Production Economics, Elsevier, vol. 113(2), pages 1038-1048, June.
    8. Park, Moon-Won & Kim, Yeong-Dae, 2000. "A branch and bound algorithm for a production scheduling problem in an assembly system under due date constraints," European Journal of Operational Research, Elsevier, vol. 123(3), pages 504-518, June.
    9. Zikai Zhang & Qiuhua Tang, 2022. "Integrating preventive maintenance to two-stage assembly flow shop scheduling: MILP model, constructive heuristics and meta-heuristics," Flexible Services and Manufacturing Journal, Springer, vol. 34(1), pages 156-203, March.
    10. Ehsan Teymourian & Vahid Kayvanfar & GH. M. Komaki & Majtaba Khodarahmi, 2016. "An Enhanced Intelligent Water Drops Algorithm for Scheduling of an Agile Manufacturing System," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(02), pages 239-266, March.
    11. Yang, W.-H.Wen-Hua, 2004. "Scheduling two-component products on parallel machines," Omega, Elsevier, vol. 32(5), pages 353-359, October.
    12. Sun, Xi & Morizawa, Kazuko & Nagasawa, Hiroyuki, 2003. "Powerful heuristics to minimize makespan in fixed, 3-machine, assembly-type flowshop scheduling," European Journal of Operational Research, Elsevier, vol. 146(3), pages 498-516, May.
    13. Yoon, Sang Hum & Sung, Chang Sup, 2005. "Fixed pre-assembly scheduling on multiple fabrication machines," International Journal of Production Economics, Elsevier, vol. 96(1), pages 109-118, April.
    14. Lin, B.M.T. & Cheng, T.C.E. & Chou, A.S.C., 2007. "Scheduling in an assembly-type production chain with batch transfer," Omega, Elsevier, vol. 35(2), pages 143-151, April.
    15. Yokoyama, Masao & Santos, Daryl L., 2005. "Three-stage flow-shop scheduling with assembly operations to minimize the weighted sum of product completion times," European Journal of Operational Research, Elsevier, vol. 161(3), pages 754-770, March.
    16. Zhang, Sicheng & Li, Xiang & Zhang, Bowen & Wang, Shouyang, 2020. "Multi-objective optimisation in flexible assembly job shop scheduling using a distributed ant colony system," European Journal of Operational Research, Elsevier, vol. 283(2), pages 441-460.
    17. Hyun-Jung Kim & Jun-Ho Lee, 2021. "Cyclic robot scheduling for 3D printer-based flexible assembly systems," Annals of Operations Research, Springer, vol. 298(1), pages 339-359, March.
    18. Zorzini, M. & Corti, D. & Pozzetti, A., 2008. "Due date (DD) quotation and capacity planning in make-to-order companies: Results from an empirical analysis," International Journal of Production Economics, Elsevier, vol. 112(2), pages 919-933, April.
    19. Yokoyama, Masao, 2008. "Flow-shop scheduling with setup and assembly operations," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1184-1195, June.
    20. James Blocher & Dilip Chhajed, 2008. "Minimizing customer order lead-time in a two-stage assembly supply chain," Annals of Operations Research, Springer, vol. 161(1), pages 25-52, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:119:y:2009:i:2:p:392-401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.