IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v267y2018i1p138-149.html
   My bibliography  Save this article

Disposal versus rework – Inventory control in a production system with random yield

Author

Listed:
  • Sonntag, Danja
  • Kiesmüller, Gudrun P.

Abstract

In a production environment where random yield plays a fairly significant role, a decision has to be made on how to handle products that do not satisfy given quality requirements. We consider a single-stage production system with a positive production time and random yield. To ensure that only high quality items are sold to the customer, a post-production quality control system has been put in place. We compare two different strategies for defective items: disposal or rework. Disposal is possible without any time delay whereas the rework process requires a positive rework time. While disposed-of items leave the production process, reworked products stay in the process and are assumed to be as good as products that are perfect when they are initially produced. The end products are stored in a warehouse to satisfy stochastic demand. We show how to determine the optimal base-stock level, which is very difficult because of unknown covariances between orders. Subsequently, an optimization model is proposed to support the planner’s decision on which strategy to choose when it comes to whether to dispose of or rework defective items. By means of a sensitivity analysis we show which parameters directly affect this decision and give managerial insights. The analysis indicates that significant cost reductions can be obtained by choosing the best strategy for defective products.

Suggested Citation

  • Sonntag, Danja & Kiesmüller, Gudrun P., 2018. "Disposal versus rework – Inventory control in a production system with random yield," European Journal of Operational Research, Elsevier, vol. 267(1), pages 138-149.
  • Handle: RePEc:eee:ejores:v:267:y:2018:i:1:p:138-149
    DOI: 10.1016/j.ejor.2017.11.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717310305
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Inderfurth, K. & Kiesmüller, G.P., 2015. "Exact and heuristic linear-inflation policies for an inventory model with random yield and arbitrary lead times," European Journal of Operational Research, Elsevier, vol. 245(1), pages 109-120.
    2. Woonghee Tim Huh & Mahesh Nagarajan, 2010. "Technical note ---Linear Inflation Rules for the Random Yield Problem: Analysis and Computations," Operations Research, INFORMS, vol. 58(1), pages 244-251, February.
    3. Jaber, Mohamad Y. & Khan, Mehmood, 2010. "Managing yield by lot splitting in a serial production line with learning, rework and scrap," International Journal of Production Economics, Elsevier, vol. 124(1), pages 32-39, March.
    4. Arthur Hsu & Yehuda Bassok, 1999. "Random Yield and Random Demand in a Production System with Downward Substitution," Operations Research, INFORMS, vol. 47(2), pages 277-290, April.
    5. Abraham Grosfeld-Nir & Yigal Gerchak, 2004. "Multiple Lotsizing in Production to Order with Random Yields: Review of Recent Advances," Annals of Operations Research, Springer, vol. 126(1), pages 43-69, February.
    6. Liu, John J. & Yang, Ping, 1996. "Optimal lot-sizing in an imperfect production system with homogeneous reworkable jobs," European Journal of Operational Research, Elsevier, vol. 91(3), pages 517-527, June.
    7. Candace Arai Yano & Hau L. Lee, 1995. "Lot Sizing with Random Yields: A Review," Operations Research, INFORMS, vol. 43(2), pages 311-334, April.
    8. Mordechai Henig & Yigal Gerchak, 1990. "The Structure of Periodic Review Policies in the Presence of Random Yield," Operations Research, INFORMS, vol. 38(4), pages 634-643, August.
    9. Kut C. So & Christopher S. Tang, 1995. "Optimal Operating Policy for a Bottleneck with Random Rework," Management Science, INFORMS, vol. 41(4), pages 620-636, April.
    10. Anne Spence Wein, 1992. "Random Yield, Rework and Scrap in a Multistage Batch Manufacturing Environment," Operations Research, INFORMS, vol. 40(3), pages 551-563, June.
    11. Inderfurth, Karl & Vogelgesang, Stephanie, 2013. "Concepts for safety stock determination under stochastic demand and different types of random production yield," European Journal of Operational Research, Elsevier, vol. 224(2), pages 293-301.
    12. Srinivas Bollapragada & Thomas E. Morton, 1999. "Myopic Heuristics for the Random Yield Problem," Operations Research, INFORMS, vol. 47(5), pages 713-722, October.
    13. Abraham Grosfeld-Nir & Yigal Gerchak, 2002. "Multistage Production to Order with Rework Capability," Management Science, INFORMS, vol. 48(5), pages 652-664, May.
    14. Dettenbach, Marcus & Thonemann, Ulrich W., 2015. "The value of real time yield information in multi-stage inventory systems – Exact and heuristic approaches," European Journal of Operational Research, Elsevier, vol. 240(1), pages 72-83.
    15. Danja Sonntag & Gudrun P. Kiesmüller, 2017. "The Influence of Quality Inspections on the Optimal Safety Stock Level," Production and Operations Management, Production and Operations Management Society, vol. 26(7), pages 1284-1298, July.
    16. Inderfurth, Karl & Kovalyov, Mikhail Y. & Ng, C.T. & Werner, Frank, 2007. "Cost minimizing scheduling of work and rework processes on a single facility under deterioration of reworkables," International Journal of Production Economics, Elsevier, vol. 105(2), pages 345-356, February.
    17. Yu-Shan Chen, 2010. "The Drivers of Green Brand Equity: Green Brand Image, Green Satisfaction, and Green Trust," Journal of Business Ethics, Springer, vol. 93(2), pages 307-319, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. G. P. Kiesmüller & K. Inderfurth, 2018. "Approaches for periodic inventory control under random production yield and fixed setup cost," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(2), pages 449-477, March.
    2. Voelkel, Michael A. & Sachs, Anna-Lena & Thonemann, Ulrich W., 2020. "An aggregation-based approximate dynamic programming approach for the periodic review model with random yield," European Journal of Operational Research, Elsevier, vol. 281(2), pages 286-298.
    3. Saurabh Bansal & Mahesh Nagarajan, 2017. "Product Portfolio Management with Production Flexibility in Agribusiness," Operations Research, INFORMS, vol. 65(4), pages 914-930, August.
    4. Danja Sonntag & Gudrun P. Kiesmüller, 2016. "The shape of the yield and its impact on inventory decisions," 4OR, Springer, vol. 14(4), pages 405-415, December.
    5. Barιş Ata & Deishin Lee & Erkut Sönmez, 2019. "Dynamic Volunteer Staffing in Multicrop Gleaning Operations," Operations Research, INFORMS, vol. 67(2), pages 295-314, March.
    6. Zare, Marjan & Esmaeili, Maryam & He, Yuanjie, 2019. "Implications of risk-sharing strategies on supply chains with multiple retailers and under random yield," International Journal of Production Economics, Elsevier, vol. 216(C), pages 413-424.
    7. Stephen E. Chick & Sameer Hasija & Javad Nasiry, 2017. "Information Elicitation and Influenza Vaccine Production," Operations Research, INFORMS, vol. 65(1), pages 75-96, February.
    8. Taesu Cheong & Chelsea White, 2013. "Inventory replenishment control under supply uncertainty," Annals of Operations Research, Springer, vol. 208(1), pages 581-592, September.
    9. Konstantaras, I. & Skouri, K. & Lagodimos, A.G., 2019. "EOQ with independent endogenous supply disruptions," Omega, Elsevier, vol. 83(C), pages 96-106.
    10. Yong He & Xuan Zhao, 2016. "Contracts and coordination: Supply chains with uncertain demand and supply," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(4), pages 305-319, June.
    11. Stephen E. Chick & Sameer Hasija & Javad Nasiry, 2017. "Information Elicitation and Influenza Vaccine Production," Operations Research, INFORMS, vol. 65(1), pages 75-96, February.
    12. Jinzhi Bu & Xiting Gong & Dacheng Yao, 2019. "Technical Note—Constant-Order Policies for Lost-Sales Inventory Models with Random Supply Functions: Asymptotics and Heuristic," Operations Research, INFORMS, vol. 68(4), pages 1063-1073, July.
    13. Jim (Junmin) Shi & Xiaohang Yue & Yao Zhao, 2014. "Operations sequencing for a multi‐stage production inventory system," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(2), pages 144-154, March.
    14. Linda V. Green & Sergei Savin & Nicos Savva, 2013. "“Nursevendor Problem”: Personnel Staffing in the Presence of Endogenous Absenteeism," Management Science, INFORMS, vol. 59(10), pages 2237-2256, October.
    15. Hsieh, Chung-Chi & Lai, Hsing-Hua, 2017. "Capacity allocation with differentiated product demands under dual sourcing," International Journal of Production Economics, Elsevier, vol. 193(C), pages 757-769.
    16. Woonghee Tim Huh & Mahesh Nagarajan, 2010. "Technical note ---Linear Inflation Rules for the Random Yield Problem: Analysis and Computations," Operations Research, INFORMS, vol. 58(1), pages 244-251, February.
    17. Qing Li & Shaohui Zheng, 2006. "Joint Inventory Replenishment and Pricing Control for Systems with Uncertain Yield and Demand," Operations Research, INFORMS, vol. 54(4), pages 696-705, August.
    18. Wen-Ya Wang & Diwakar Gupta, 2014. "Nurse Absenteeism and Staffing Strategies for Hospital Inpatient Units," Manufacturing & Service Operations Management, INFORMS, vol. 16(3), pages 439-454, July.
    19. Soumita Kundu & Tripti Chakrabarti & Dipak Kumar Jana, 2014. "Optimal Manufacturing-Remanufacturing Production Policy for a Closed-Loop Supply Chain under Fill Rate and Budget Constraint in Bifuzzy Environments," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2014, pages 1-14, June.
    20. Avi Herbon & Konstantin Kogan, 2014. "Time-dependent and independent control rules for coordinated production and pricing under demand uncertainty and finite planning horizons," Annals of Operations Research, Springer, vol. 223(1), pages 195-216, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:267:y:2018:i:1:p:138-149. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/eor .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.