IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v242y2015i2p445-454.html
   My bibliography  Save this article

Measuring the bullwhip effect for supply chains with seasonal demand components

Author

Listed:
  • Nagaraja, C.H.
  • Thavaneswaran, A.
  • Appadoo, S.S.

Abstract

A bullwhip measure for a two-stage supply chain with an order-up-to inventory policy is derived for a general, stationary SARMA(p, q) × (P, Q)s demand process. Explicit expressions for several SARMA models are obtained to illustrate the key relationship between lead-time and seasonal lag. It is found that the bullwhip effect can be reduced considerably by shortening the lead-time in relation to the seasonal lag value.

Suggested Citation

  • Nagaraja, C.H. & Thavaneswaran, A. & Appadoo, S.S., 2015. "Measuring the bullwhip effect for supply chains with seasonal demand components," European Journal of Operational Research, Elsevier, vol. 242(2), pages 445-454.
  • Handle: RePEc:eee:ejores:v:242:y:2015:i:2:p:445-454
    DOI: 10.1016/j.ejor.2014.10.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714008431
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.10.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Suresh P. Sethi & Feng Cheng, 1997. "Optimality of ( s , S ) Policies in Inventory Models with Markovian Demand," Operations Research, INFORMS, vol. 45(6), pages 931-939, December.
    2. Zhang, Xiaolong, 2004. "The impact of forecasting methods on the bullwhip effect," International Journal of Production Economics, Elsevier, vol. 88(1), pages 15-27, March.
    3. Wallace B. Crowston & Warren H. Hausman & William R. Kampe, II, 1973. "Multistage Production for Stochastic Seasonal Demand," Management Science, INFORMS, vol. 19(8), pages 924-935, April.
    4. Kenneth Gilbert, 2005. "An ARIMA Supply Chain Model," Management Science, INFORMS, vol. 51(2), pages 305-310, February.
    5. James R. Bradley & Bruce C. Arntzen, 1999. "The Simultaneous Planning of Production, Capacity, and Inventory in Seasonal Demand Environments," Operations Research, INFORMS, vol. 47(6), pages 795-806, December.
    6. Duc, Truong Ton Hien & Luong, Huynh Trung & Kim, Yeong-Dae, 2008. "A measure of bullwhip effect in supply chains with a mixed autoregressive-moving average demand process," European Journal of Operational Research, Elsevier, vol. 187(1), pages 243-256, May.
    7. Disney, S. M. & Towill, D. R., 2003. "On the bullwhip and inventory variance produced by an ordering policy," Omega, Elsevier, vol. 31(3), pages 157-167, June.
    8. John O. McClain & Joseph Thomas, 1977. "Horizon Effects in Aggregate Production Planning with Seasonal Demand," Management Science, INFORMS, vol. 23(7), pages 728-736, March.
    9. Luong, Huynh Trung, 2007. "Measure of bullwhip effect in supply chains with autoregressive demand process," European Journal of Operational Research, Elsevier, vol. 180(3), pages 1086-1097, August.
    10. J. Joseph Beaulieu & Jeffrey K. MacKie-Mason & Jeffrey A. Miron, 1992. "Why Do Countries and Industries with Large Seasonal Cycles Also Have Large Business Cycles?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(2), pages 621-656.
    11. Simon Board, 2008. "Durable-Goods Monopoly with Varying Demand," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 75(2), pages 391-413.
    12. Heien, Dale, 1983. "Seasonality in U.S. Consumer Demand," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(4), pages 280-284, October.
    13. Dejonckheere, J. & Disney, S. M. & Lambrecht, M. R. & Towill, D. R., 2003. "Measuring and avoiding the bullwhip effect: A control theoretic approach," European Journal of Operational Research, Elsevier, vol. 147(3), pages 567-590, June.
    14. Stephen C. Graves, 1999. "A Single-Item Inventory Model for a Nonstationary Demand Process," Manufacturing & Service Operations Management, INFORMS, vol. 1(1), pages 50-61.
    15. G Baltas, 2005. "Modelling category demand in retail chains," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(11), pages 1258-1264, November.
    16. Hau L. Lee & V. Padmanabhan & Seungjin Whang, 1997. "Information Distortion in a Supply Chain: The Bullwhip Effect," Management Science, INFORMS, vol. 43(4), pages 546-558, April.
    17. Xiaolong Zhang, 2004. "Evolution of ARMA Demand in Supply Chains," Manufacturing & Service Operations Management, INFORMS, vol. 6(2), pages 195-198, April.
    18. Luong, Huynh Trung & Phien, Nguyen Huu, 2007. "Measure of bullwhip effect in supply chains: The case of high order autoregressive demand process," European Journal of Operational Research, Elsevier, vol. 183(1), pages 197-209, November.
    19. Yossi Aviv & Awi Federgruen, 2001. "Capacitated Multi-Item Inventory Systems with Random and Seasonally Fluctuating Demands: Implications for Postponement Strategies," Management Science, INFORMS, vol. 47(4), pages 512-531, April.
    20. Stephen C. Graves, 1999. "Addendum to "A Single-Item Inventory Model for a Nonstationary Demand Process"," Manufacturing & Service Operations Management, INFORMS, vol. 1(2), pages 174-174.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xun & Disney, Stephen M., 2017. "Mitigating variance amplification under stochastic lead-time: The proportional control approach," European Journal of Operational Research, Elsevier, vol. 256(1), pages 151-162.
    2. Nagaraja, Chaitra H. & McElroy, Tucker, 2018. "The multivariate bullwhip effect," European Journal of Operational Research, Elsevier, vol. 267(1), pages 96-106.
    3. Erkan Bayraktar & Kazim Sari & Ekrem Tatoglu & Selim Zaim & Dursun Delen, 2020. "Assessing the supply chain performance: a causal analysis," Annals of Operations Research, Springer, vol. 287(1), pages 37-60, April.
    4. Kvamsdal, Sturla F. & Maroto, José M. & Morán, Manuel & Sandal, Leif K., 2020. "Bioeconomic modeling of seasonal fisheries," European Journal of Operational Research, Elsevier, vol. 281(2), pages 332-340.
    5. Sinha, Priyank & Kumar, Sameer & Prakash, Surya, 2020. "Measuring and mitigating the effects of cost disturbance propagation in multi-echelon apparel supply chains," European Journal of Operational Research, Elsevier, vol. 282(1), pages 148-160.
    6. Sabitha, Devarajulu & Rajendran, Chandrasekharan & Kalpakam, S. & Ziegler, Hans, 2016. "The value of information sharing in a serial supply chain with AR(1) demand and non-zero replenishment lead times," European Journal of Operational Research, Elsevier, vol. 255(3), pages 758-777.
    7. Junhai Ma & Jing Zhang & Liqing Zhu, 2018. "Study of the Bullwhip Effect under Various Forecasting Methods in Electronics Supply Chain with Dual Retailers considering Market Share," Complexity, Hindawi, vol. 2018, pages 1-19, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xun & Disney, Stephen M., 2016. "The bullwhip effect: Progress, trends and directions," European Journal of Operational Research, Elsevier, vol. 250(3), pages 691-701.
    2. Junhai Ma & Xiaogang Ma, 2017. "Measure of the bullwhip effect considering the market competition between two retailers," International Journal of Production Research, Taylor & Francis Journals, vol. 55(2), pages 313-326, January.
    3. Junhai Ma & Jing Zhang & Liqing Zhu, 2018. "Study of the Bullwhip Effect under Various Forecasting Methods in Electronics Supply Chain with Dual Retailers considering Market Share," Complexity, Hindawi, vol. 2018, pages 1-19, January.
    4. Nagaraja, Chaitra H. & McElroy, Tucker, 2018. "The multivariate bullwhip effect," European Journal of Operational Research, Elsevier, vol. 267(1), pages 96-106.
    5. Gaalman, Gerard & Disney, Stephen M. & Wang, Xun, 2022. "When bullwhip increases in the lead time: An eigenvalue analysis of ARMA demand," International Journal of Production Economics, Elsevier, vol. 250(C).
    6. Pastore, Erica & Alfieri, Arianna & Zotteri, Giulio & Boylan, John E., 2020. "The impact of demand parameter uncertainty on the bullwhip effect," European Journal of Operational Research, Elsevier, vol. 283(1), pages 94-107.
    7. Babai, M.Z. & Boylan, J.E. & Syntetos, A.A. & Ali, M.M., 2016. "Reduction of the value of information sharing as demand becomes strongly auto-correlated," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 130-135.
    8. Nepal, Bimal & Murat, Alper & Babu Chinnam, Ratna, 2012. "The bullwhip effect in capacitated supply chains with consideration for product life-cycle aspects," International Journal of Production Economics, Elsevier, vol. 136(2), pages 318-331.
    9. Sodhi, ManMohan S. & Tang, Christopher S., 2011. "The incremental bullwhip effect of operational deviations in an arborescent supply chain with requirements planning," European Journal of Operational Research, Elsevier, vol. 215(2), pages 374-382, December.
    10. Ali, Mohammad M. & Boylan, John E. & Syntetos, Aris A., 2012. "Forecast errors and inventory performance under forecast information sharing," International Journal of Forecasting, Elsevier, vol. 28(4), pages 830-841.
    11. Rupesh Kumar Pati, 2014. "Modelling Bullwhip Effect in a Closed Loop Supply Chain with ARMA Demand," IIM Kozhikode Society & Management Review, , vol. 3(2), pages 149-164, July.
    12. Ahmed Shaban & Mohamed A. Shalaby & Giulio Di Gravio & Riccardo Patriarca, 2020. "Analysis of Variance Amplification and Service Level in a Supply Chain with Correlated Demand," Sustainability, MDPI, vol. 12(16), pages 1-27, August.
    13. Ma, Yungao & Wang, Nengmin & He, Zhengwen & Lu, Jizhou & Liang, Huigang, 2015. "Analysis of the bullwhip effect in two parallel supply chains with interacting price-sensitive demands," European Journal of Operational Research, Elsevier, vol. 243(3), pages 815-825.
    14. Kristianto, Yohanes & Helo, Petri & Jiao, Jianxin (Roger) & Sandhu, Maqsood, 2012. "Adaptive fuzzy vendor managed inventory control for mitigating the Bullwhip effect in supply chains," European Journal of Operational Research, Elsevier, vol. 216(2), pages 346-355.
    15. Boute, Robert N. & Disney, Stephen M. & Lambrecht, Marc R. & Houdt, Benny Van, 2014. "Coordinating lead times and safety stocks under autocorrelated demand," European Journal of Operational Research, Elsevier, vol. 232(1), pages 52-63.
    16. Agrawal, Sunil & Sengupta, Raghu Nandan & Shanker, Kripa, 2009. "Impact of information sharing and lead time on bullwhip effect and on-hand inventory," European Journal of Operational Research, Elsevier, vol. 192(2), pages 576-593, January.
    17. Zhang, Xiaolong & Burke, Gerard J., 2011. "Analysis of compound bullwhip effect causes," European Journal of Operational Research, Elsevier, vol. 210(3), pages 514-526, May.
    18. Ouyang, Yanfeng & Daganzo, Carlos, 2008. "Robust tests for the bullwhip effect in supply chains with stochastic dynamics," European Journal of Operational Research, Elsevier, vol. 185(1), pages 340-353, February.
    19. Rostami-Tabar, Bahman & Disney, Stephen M., 2023. "On the order-up-to policy with intermittent integer demand and logically consistent forecasts," International Journal of Production Economics, Elsevier, vol. 257(C).
    20. Ouyang, Yanfeng & Li, Xiaopeng, 2010. "The bullwhip effect in supply chain networks," European Journal of Operational Research, Elsevier, vol. 201(3), pages 799-810, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:242:y:2015:i:2:p:445-454. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.