IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v287y2020i1d10.1007_s10479-019-03457-y.html
   My bibliography  Save this article

Assessing the supply chain performance: a causal analysis

Author

Listed:
  • Erkan Bayraktar

    (American University of the Middle East)

  • Kazim Sari

    (Beykent University)

  • Ekrem Tatoglu

    (University of Sharjah
    Ibn Haldun University)

  • Selim Zaim

    (Istanbul Sehir University)

  • Dursun Delen

    (Oklahoma State University)

Abstract

Measuring the performance-related factors of a unit within a supply-chain is a challenging problem, mainly because of the complex interactions among the members governed by the supply chain strategy employed. Synergistic use of discrete-event simulation and structural equation modeling allows researchers and practitioners to analyze causal relationships between order-fulfillment characteristics of a supply-chain and retailers’ performance metrics. In this study, we model, simulate, and analyze a two-level supply-chain with seasonal linear demand, and using the information therein, develop a causal model to measure the links/relationships among the order-fulfillment factors and the retailer’s performance. According to the findings, of all the order-fulfillment characteristics of a supply-chain, the forecast inaccuracy was found to be the most important in mitigating the bullwhip effect. Concerning the total inventory cost and fill-rate as performance indicators of retailers, the desired service level had the highest priority, followed by the lead-time and forecast inaccuracy, respectively. To reduce the total inventory cost, the bullwhip effect seems to have the lowest priority for the retailers, as it does not appear to have a significant impact on the fill rate. Although seasonality (to some extent) influences the retailer’s performance, it does not seem to have a significant impact on the ranking of the factors affecting retailers’ supply-chain performance; except for the case where the backorder cost is overestimated.

Suggested Citation

  • Erkan Bayraktar & Kazim Sari & Ekrem Tatoglu & Selim Zaim & Dursun Delen, 2020. "Assessing the supply chain performance: a causal analysis," Annals of Operations Research, Springer, vol. 287(1), pages 37-60, April.
  • Handle: RePEc:spr:annopr:v:287:y:2020:i:1:d:10.1007_s10479-019-03457-y
    DOI: 10.1007/s10479-019-03457-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-019-03457-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-019-03457-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Xiande & Xie, Jinxing & Leung, Janny, 2002. "The impact of forecasting model selection on the value of information sharing in a supply chain," European Journal of Operational Research, Elsevier, vol. 142(2), pages 321-344, October.
    2. Robert L. Bray & Yuliang Yao & Yongrui Duan & Jiazhen Huo, 2019. "Ration Gaming and the Bullwhip Effect," Operations Research, INFORMS, vol. 67(2), pages 453-467, March.
    3. Kiyoung Jeong & Jae-Dong Hong, 2019. "The impact of information sharing on bullwhip effect reduction in a supply chain," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1739-1751, April.
    4. Zhang, Xiaolong, 2004. "The impact of forecasting methods on the bullwhip effect," International Journal of Production Economics, Elsevier, vol. 88(1), pages 15-27, March.
    5. Junhai Ma & Wandong Lou & Yi Tian, 2019. "Bullwhip effect and complexity analysis in a multi-channel supply chain considering price game with discount sensitivity," International Journal of Production Research, Taylor & Francis Journals, vol. 57(17), pages 5432-5452, September.
    6. Tangsucheeva, Rattachut & Prabhu, Vittaldas, 2013. "Modeling and analysis of cash-flow bullwhip in supply chain," International Journal of Production Economics, Elsevier, vol. 145(1), pages 431-447.
    7. Yossi Aviv, 2002. "Gaining Benefits from Joint Forecasting and Replenishment Processes: The Case of Auto-Correlated Demand," Manufacturing & Service Operations Management, INFORMS, vol. 4(1), pages 55-74, December.
    8. Wright, David & Yuan, Xin, 2008. "Mitigating the bullwhip effect by ordering policies and forecasting methods," International Journal of Production Economics, Elsevier, vol. 113(2), pages 587-597, June.
    9. Chatfield, Dean C. & Pritchard, Alan M., 2013. "Returns and the bullwhip effect," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 159-175.
    10. John D. Sterman, 1989. "Modeling Managerial Behavior: Misperceptions of Feedback in a Dynamic Decision Making Experiment," Management Science, INFORMS, vol. 35(3), pages 321-339, March.
    11. Y Barlas & B Gunduz, 2011. "Demand forecasting and sharing strategies to reduce fluctuations and the bullwhip effect in supply chains," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(3), pages 458-473, March.
    12. Nicky J. Welton & Howard H. Z. Thom, 2015. "Value of Information," Medical Decision Making, , vol. 35(5), pages 564-566, July.
    13. Zotteri, Giulio, 2013. "An empirical investigation on causes and effects of the Bullwhip-effect: Evidence from the personal care sector," International Journal of Production Economics, Elsevier, vol. 143(2), pages 489-498.
    14. Luong, Huynh Trung, 2007. "Measure of bullwhip effect in supply chains with autoregressive demand process," European Journal of Operational Research, Elsevier, vol. 180(3), pages 1086-1097, August.
    15. Dejonckheere, J. & Disney, S. M. & Lambrecht, M. R. & Towill, D. R., 2003. "Measuring and avoiding the bullwhip effect: A control theoretic approach," European Journal of Operational Research, Elsevier, vol. 147(3), pages 567-590, June.
    16. Sari, Kazim, 2008. "On the benefits of CPFR and VMI: A comparative simulation study," International Journal of Production Economics, Elsevier, vol. 113(2), pages 575-586, June.
    17. Bayraktar, Erkan & Lenny Koh, S.C. & Gunasekaran, A. & Sari, Kazim & Tatoglu, Ekrem, 2008. "The role of forecasting on bullwhip effect for E-SCM applications," International Journal of Production Economics, Elsevier, vol. 113(1), pages 193-204, May.
    18. Ferbar Tratar, Liljana, 2015. "Forecasting method for noisy demand," International Journal of Production Economics, Elsevier, vol. 161(C), pages 64-73.
    19. Wang, Xun & Disney, Stephen M., 2016. "The bullwhip effect: Progress, trends and directions," European Journal of Operational Research, Elsevier, vol. 250(3), pages 691-701.
    20. Nagaraja, C.H. & Thavaneswaran, A. & Appadoo, S.S., 2015. "Measuring the bullwhip effect for supply chains with seasonal demand components," European Journal of Operational Research, Elsevier, vol. 242(2), pages 445-454.
    21. Luong, Huynh Trung & Phien, Nguyen Huu, 2007. "Measure of bullwhip effect in supply chains: The case of high order autoregressive demand process," European Journal of Operational Research, Elsevier, vol. 183(1), pages 197-209, November.
    22. K. Devika & A. Jafarian & A. Hassanzadeh & R. Khodaverdi, 2016. "Optimizing of bullwhip effect and net stock amplification in three-echelon supply chains using evolutionary multi-objective metaheuristics," Annals of Operations Research, Springer, vol. 242(2), pages 457-487, July.
    23. Dejonckheere, J. & Disney, S. M. & Lambrecht, M. R. & Towill, D. R., 2004. "The impact of information enrichment on the Bullwhip effect in supply chains: A control engineering perspective," European Journal of Operational Research, Elsevier, vol. 153(3), pages 727-750, March.
    24. Sterman, John D., 1989. "Misperceptions of feedback in dynamic decision making," Organizational Behavior and Human Decision Processes, Elsevier, vol. 43(3), pages 301-335, June.
    25. Rachel Croson & Karen Donohue, 2006. "Behavioral Causes of the Bullwhip Effect and the Observed Value of Inventory Information," Management Science, INFORMS, vol. 52(3), pages 323-336, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qining Deng & K. Noorliza, 2023. "Integration, Resilience, and Innovation Capability Enhance LSPs’ Operational Performance," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
    2. Asif Arshad Ali & Asif Mahmood, 2023. "How Do Supply Chain Integration and Product Innovation Capability Drive Sustainable Operational Performance?," Sustainability, MDPI, vol. 16(1), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. K. Devika & A. Jafarian & A. Hassanzadeh & R. Khodaverdi, 2016. "Optimizing of bullwhip effect and net stock amplification in three-echelon supply chains using evolutionary multi-objective metaheuristics," Annals of Operations Research, Springer, vol. 242(2), pages 457-487, July.
    2. Wang, Xun & Disney, Stephen M., 2016. "The bullwhip effect: Progress, trends and directions," European Journal of Operational Research, Elsevier, vol. 250(3), pages 691-701.
    3. Enrique Holgado de Frutos & Juan R Trapero & Francisco Ramos, 2020. "A literature review on operational decisions applied to collaborative supply chains," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-28, March.
    4. Ahmed Shaban & Mohamed A. Shalaby & Giulio Di Gravio & Riccardo Patriarca, 2020. "Analysis of Variance Amplification and Service Level in a Supply Chain with Correlated Demand," Sustainability, MDPI, vol. 12(16), pages 1-27, August.
    5. Chiang, Chung-Yean & Lin, Winston T. & Suresh, Nallan C., 2016. "An empirically-simulated investigation of the impact of demand forecasting on the bullwhip effect: Evidence from U.S. auto industry," International Journal of Production Economics, Elsevier, vol. 177(C), pages 53-65.
    6. Gaalman, Gerard & Disney, Stephen M. & Wang, Xun, 2022. "When bullwhip increases in the lead time: An eigenvalue analysis of ARMA demand," International Journal of Production Economics, Elsevier, vol. 250(C).
    7. de Lima, Daruichi Pereira & Fioriolli, José Carlos & Padula, Antonio Domingos & Pumi, Guilherme, 2018. "The impact of Chinese imports of soybean on port infrastructure in Brazil: A study based on the concept of the “Bullwhip Effect”," Journal of Commodity Markets, Elsevier, vol. 9(C), pages 55-76.
    8. Ciancimino, Elena & Cannella, Salvatore & Bruccoleri, Manfredi & Framinan, Jose M., 2012. "On the Bullwhip Avoidance Phase: The Synchronised Supply Chain," European Journal of Operational Research, Elsevier, vol. 221(1), pages 49-63.
    9. Sodhi, ManMohan S. & Tang, Christopher S., 2011. "The incremental bullwhip effect of operational deviations in an arborescent supply chain with requirements planning," European Journal of Operational Research, Elsevier, vol. 215(2), pages 374-382, December.
    10. Lin, Junyi & Huang, Hongfu & Li, Shanshan & Naim, Mohamed M., 2023. "On the dynamics of order pipeline inventory in a nonlinear order-up-to system," International Journal of Production Economics, Elsevier, vol. 266(C).
    11. Zhu, Tianyuan & Balakrishnan, Jaydeep & da Silveira, Giovani J.C., 2020. "Bullwhip effect in the oil and gas supply chain: A multiple-case study," International Journal of Production Economics, Elsevier, vol. 224(C).
    12. Roberto Dominguez & Salvatore Cannella & Borja Ponte & Jose M. Framinan, 2022. "Information sharing in decentralised supply chains with partial collaboration," Flexible Services and Manufacturing Journal, Springer, vol. 34(2), pages 263-292, June.
    13. Bayraktar, Erkan & Lenny Koh, S.C. & Gunasekaran, A. & Sari, Kazim & Tatoglu, Ekrem, 2008. "The role of forecasting on bullwhip effect for E-SCM applications," International Journal of Production Economics, Elsevier, vol. 113(1), pages 193-204, May.
    14. Cannella, Salvatore & Framinan, Jose M. & Bruccoleri, Manfredi & Barbosa-Póvoa, Ana Paula & Relvas, Susana, 2015. "The effect of Inventory Record Inaccuracy in Information Exchange Supply Chains," European Journal of Operational Research, Elsevier, vol. 243(1), pages 120-129.
    15. Babai, M.Z. & Boylan, J.E. & Syntetos, A.A. & Ali, M.M., 2016. "Reduction of the value of information sharing as demand becomes strongly auto-correlated," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 130-135.
    16. Dominguez, Roberto & Cannella, Salvatore & Barbosa-Póvoa, Ana P. & Framinan, Jose M., 2018. "Information sharing in supply chains with heterogeneous retailers," Omega, Elsevier, vol. 79(C), pages 116-132.
    17. repec:ine:journl:v:28:y:2009:i:37:p:54-71 is not listed on IDEAS
    18. Cannella, Salvatore & Dominguez, Roberto & Framinan, Jose M., 2017. "Inventory record inaccuracy – The impact of structural complexity and lead time variability," Omega, Elsevier, vol. 68(C), pages 123-138.
    19. Huang, Shupeng & Potter, Andrew & Eyers, Daniel & Li, Qinyun, 2021. "The influence of online review adoption on the profitability of capacitated supply chains," Omega, Elsevier, vol. 105(C).
    20. Chatfield, Dean C. & Pritchard, Alan M., 2013. "Returns and the bullwhip effect," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 159-175.
    21. Nepal, Bimal & Murat, Alper & Babu Chinnam, Ratna, 2012. "The bullwhip effect in capacitated supply chains with consideration for product life-cycle aspects," International Journal of Production Economics, Elsevier, vol. 136(2), pages 318-331.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:287:y:2020:i:1:d:10.1007_s10479-019-03457-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.