IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v237y2014i1p50-61.html
   My bibliography  Save this article

Car sequencing versus mixed-model sequencing: A computational study

Author

Listed:
  • Golle, Uli
  • Rothlauf, Franz
  • Boysen, Nils

Abstract

The paper deals with the two most important mathematical models for sequencing products on a mixed-model assembly line in order to minimize work overload the mixed-model sequencing (MMS) model and the car sequencing (CS) model. Although both models follow the same underlying objective, only MMS directly addresses the work overload in its objective function. CS instead applies a surrogate objective using so-called sequencing rules which restrict labor-intensive options accompanied with the products in the sequence. The CS model minimizes the number of violations of the respective sequencing rules, which is widely assumed to lead to minimum work overload. This paper experimentally compares CS with MMS in order to quantify the gap in the solution quality between both models. The paper studies several variants of CS with different sequencing rule generation approaches and different objective functions from the literature as well as a newly introduced weighting factor. The performance of the different models is evaluated on a variety of random test instances. Although the objectives of CS and MMS are positively linearly correlated, results show that a sequence found by CS leads to at least 15% more work overload than a solution found by MMS. For none of the considered test instances and for none of the three different objective functions, CS is able to produce competitive results in terms of solution quality (work overload) compared to MMS. The results suggest that decision makers using CS should investigate whether MMS would lead to better sequencing orders for their specific instances.

Suggested Citation

  • Golle, Uli & Rothlauf, Franz & Boysen, Nils, 2014. "Car sequencing versus mixed-model sequencing: A computational study," European Journal of Operational Research, Elsevier, vol. 237(1), pages 50-61.
  • Handle: RePEc:eee:ejores:v:237:y:2014:i:1:p:50-61
    DOI: 10.1016/j.ejor.2014.01.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714000149
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.01.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Solnon, Christine & Cung, Van Dat & Nguyen, Alain & Artigues, Christian, 2008. "The car sequencing problem: Overview of state-of-the-art methods and industrial case-study of the ROADEF'2005 challenge problem," European Journal of Operational Research, Elsevier, vol. 191(3), pages 912-927, December.
    2. Benoist, Thierry, 2008. "Soft car sequencing with colors: Lower bounds and optimality proofs," European Journal of Operational Research, Elsevier, vol. 191(3), pages 957-971, December.
    3. Scholl, Armin, 1995. "Balancing and sequencing of assembly lines," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 9690, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    4. Golle, Uli & Boysen, Nils & Rothlauf, Franz, 2010. "Analysis and design of sequencing rules for car sequencing," European Journal of Operational Research, Elsevier, vol. 206(3), pages 579-585, November.
    5. Li-Hui Tsai, 1995. "Mixed-Model Sequencing to Minimize Utility Work and the Risk of Conveyor Stoppage," Management Science, INFORMS, vol. 41(3), pages 485-495, March.
    6. Andreas Drexl & Alf Kimms, 2001. "Sequencing JIT Mixed-Model Assembly Lines Under Station-Load and Part-Usage Constraints," Management Science, INFORMS, vol. 47(3), pages 480-491, March.
    7. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2009. "Sequencing mixed-model assembly lines: Survey, classification and model critique," European Journal of Operational Research, Elsevier, vol. 192(2), pages 349-373, January.
    8. Fliedner, Malte & Boysen, Nils, 2008. "Solving the car sequencing problem via Branch & Bound," European Journal of Operational Research, Elsevier, vol. 191(3), pages 1023-1042, December.
    9. Gagne, Caroline & Gravel, Marc & Price, Wilson L., 2006. "Solving real car sequencing problems with ant colony optimization," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1427-1448, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mosadegh, H. & Fatemi Ghomi, S.M.T. & Süer, G.A., 2020. "Stochastic mixed-model assembly line sequencing problem: Mathematical modeling and Q-learning based simulated annealing hyper-heuristics," European Journal of Operational Research, Elsevier, vol. 282(2), pages 530-544.
    2. Abolfazl Jafari Asl & Maghsud Solimanpur & Ravi Shankar, 2019. "Multi-objective multi-model assembly line balancing problem: a quantitative study in engine manufacturing industry," OPSEARCH, Springer;Operational Research Society of India, vol. 56(3), pages 603-627, September.
    3. Janis Brammer & Bernhard Lutz & Dirk Neumann, 2022. "Stochastic mixed model sequencing with multiple stations using reinforcement learning and probability quantiles," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 29-56, March.
    4. Karim Aroui & Gülgün Alpan & Yannick Frein, 2017. "Minimising work overload in mixed-model assembly lines with different types of operators: a case study from the truck industry," International Journal of Production Research, Taylor & Francis Journals, vol. 55(21), pages 6305-6326, November.
    5. Thorben Krueger & Achim Koberstein & Norbert Bittner, 2022. "Anticipating technical car sequencing rules in the master production scheduling of mixed-model assembly lines," Flexible Services and Manufacturing Journal, Springer, vol. 34(2), pages 351-407, June.
    6. H. Mosadegh & S.M.T. Fatemi Ghomi & G.A. Süer, 2017. "Heuristic approaches for mixed-model sequencing problem with stochastic processing times," International Journal of Production Research, Taylor & Francis Journals, vol. 55(10), pages 2857-2880, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Uli Golle & Franz Rothlauf & Nils Boysen, 2015. "Iterative beam search for car sequencing," Annals of Operations Research, Springer, vol. 226(1), pages 239-254, March.
    2. Florian Jaehn & Sergey Kovalev & Mikhail Y. Kovalyov & Erwin Pesch, 2014. "Multiproduct batching and scheduling with buffered rework: The case of a car paint shop," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(6), pages 458-471, September.
    3. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2009. "Sequencing mixed-model assembly lines: Survey, classification and model critique," European Journal of Operational Research, Elsevier, vol. 192(2), pages 349-373, January.
    4. Parames Chutima & Sathaporn Olarnviwatchai, 2018. "A multi-objective car sequencing problem on two-sided assembly lines," Journal of Intelligent Manufacturing, Springer, vol. 29(7), pages 1617-1636, October.
    5. Golle, Uli & Boysen, Nils & Rothlauf, Franz, 2010. "Analysis and design of sequencing rules for car sequencing," European Journal of Operational Research, Elsevier, vol. 206(3), pages 579-585, November.
    6. Fliedner, Malte & Boysen, Nils, 2008. "Solving the car sequencing problem via Branch & Bound," European Journal of Operational Research, Elsevier, vol. 191(3), pages 1023-1042, December.
    7. Karim Aroui & Gülgün Alpan & Yannick Frein, 2017. "Minimising work overload in mixed-model assembly lines with different types of operators: a case study from the truck industry," International Journal of Production Research, Taylor & Francis Journals, vol. 55(21), pages 6305-6326, November.
    8. Boysen, Nils & Scholl, Armin & Wopperer, Nico, 2012. "Resequencing of mixed-model assembly lines: Survey and research agenda," European Journal of Operational Research, Elsevier, vol. 216(3), pages 594-604.
    9. Bock, Stefan & Rosenberg, Otto & Brackel, Thomas van, 2006. "Controlling mixed-model assembly lines in real-time by using distributed systems," European Journal of Operational Research, Elsevier, vol. 168(3), pages 880-904, February.
    10. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2009. "The product rate variation problem and its relevance in real world mixed-model assembly lines," European Journal of Operational Research, Elsevier, vol. 197(2), pages 818-824, September.
    11. Staeblein, Thomas & Aoki, Katsuki, 2015. "Planning and scheduling in the automotive industry: A comparison of industrial practice at German and Japanese makers," International Journal of Production Economics, Elsevier, vol. 162(C), pages 258-272.
    12. Buergin, Jens & Hammerschmidt, Andreas & Hao, Han & Kramer, Sergej & Tutsch, Hansjoerg & Lanza, Gisela, 2019. "Robust order planning with planned orders for multi-variant series production in a production network," International Journal of Production Economics, Elsevier, vol. 210(C), pages 107-119.
    13. Bautista, Joaquín & Cano, Alberto, 2011. "Solving mixed model sequencing problem in assembly lines with serial workstations with work overload minimisation and interruption rules," European Journal of Operational Research, Elsevier, vol. 210(3), pages 495-513, May.
    14. Elahi, Mirza M. Lutfe & Rajpurohit, Karthik & Rosenberger, Jay M. & Zaruba, Gergely & Priest, John, 2015. "Optimizing real-time vehicle sequencing of a paint shop conveyor system," Omega, Elsevier, vol. 55(C), pages 61-72.
    15. Bautista, Joaquín & Alfaro, Rocío & Batalla, Cristina, 2015. "Modeling and solving the mixed-model sequencing problem to improve productivity," International Journal of Production Economics, Elsevier, vol. 161(C), pages 83-95.
    16. Boysen, Nils & Fliedner, Malte, 2007. "Comments on "Solving real car sequencing problems with ant colony optimization"," European Journal of Operational Research, Elsevier, vol. 182(1), pages 466-468, October.
    17. Marcel Lehmann & Heinrich Kuhn, 2020. "Modeling and analyzing sequence stability in flexible automotive production systems," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 366-394, June.
    18. Janis Brammer & Bernhard Lutz & Dirk Neumann, 2022. "Stochastic mixed model sequencing with multiple stations using reinforcement learning and probability quantiles," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 29-56, March.
    19. Drexl, Andreas & Kimms, Alf, 1999. "Belastungsorientierte Just-in-Time Variantenfließfertigung," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 502, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    20. Lopes, Thiago Cantos & Pastre, Giuliano Vidal & Michels, Adalberto Sato & Magatão, Leandro, 2020. "Flexible multi-manned assembly line balancing problem: Model, heuristic procedure, and lower bounds for line length minimization," Omega, Elsevier, vol. 95(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:237:y:2014:i:1:p:50-61. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.