IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v29y2018i7d10.1007_s10845-016-1201-6.html
   My bibliography  Save this article

A multi-objective car sequencing problem on two-sided assembly lines

Author

Listed:
  • Parames Chutima

    (Chulalongkorn University)

  • Sathaporn Olarnviwatchai

    (Chulalongkorn University)

Abstract

The car sequencing problem consists of sequencing a given set of cars to be produced in each day. This paper presents an application of the extended coincident algorithm (COIN-E), which is an instance of the estimation of distribution algorithms, to a multi-objective car sequencing problem on a more realistic platform, i.e. two-sided assembly lines. Three conflicting objectives are optimised simultaneously in a Pareto sense including minimise the number of paint colour changes, minimise the total number of ratio constraint violations and minimise the utility work. The performances of COIN-E are compared with COIN (its original version), NSGA II, DPSO and BBO. The results reveal that COIN-E is superior to the other contestant algorithms in both solution quality and diversity.

Suggested Citation

  • Parames Chutima & Sathaporn Olarnviwatchai, 2018. "A multi-objective car sequencing problem on two-sided assembly lines," Journal of Intelligent Manufacturing, Springer, vol. 29(7), pages 1617-1636, October.
  • Handle: RePEc:spr:joinma:v:29:y:2018:i:7:d:10.1007_s10845-016-1201-6
    DOI: 10.1007/s10845-016-1201-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-016-1201-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-016-1201-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Estellon, Bertrand & Gardi, Frédéric & Nouioua, Karim, 2008. "Two local search approaches for solving real-life car sequencing problems," European Journal of Operational Research, Elsevier, vol. 191(3), pages 928-944, December.
    2. Briant, Olivier & Naddef, Denis & Mounié, Grégory, 2008. "Greedy approach and multi-criteria simulated annealing for the car sequencing problem," European Journal of Operational Research, Elsevier, vol. 191(3), pages 993-1003, December.
    3. Solnon, Christine & Cung, Van Dat & Nguyen, Alain & Artigues, Christian, 2008. "The car sequencing problem: Overview of state-of-the-art methods and industrial case-study of the ROADEF'2005 challenge problem," European Journal of Operational Research, Elsevier, vol. 191(3), pages 912-927, December.
    4. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2009. "Sequencing mixed-model assembly lines: Survey, classification and model critique," European Journal of Operational Research, Elsevier, vol. 192(2), pages 349-373, January.
    5. Fliedner, Malte & Boysen, Nils, 2008. "Solving the car sequencing problem via Branch & Bound," European Journal of Operational Research, Elsevier, vol. 191(3), pages 1023-1042, December.
    6. Cordeau, Jean-François & Laporte, Gilbert & Pasin, Federico, 2008. "Iterated tabu search for the car sequencing problem," European Journal of Operational Research, Elsevier, vol. 191(3), pages 945-956, December.
    7. Ribeiro, Celso C. & Aloise, Daniel & Noronha, Thiago F. & Rocha, Caroline & Urrutia, Sebastián, 2008. "An efficient implementation of a VNS/ILS heuristic for a real-life car sequencing problem," European Journal of Operational Research, Elsevier, vol. 191(3), pages 596-611, December.
    8. Gagne, Caroline & Gravel, Marc & Price, Wilson L., 2006. "Solving real car sequencing problems with ant colony optimization," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1427-1448, November.
    9. Solnon, Christine, 2008. "Combining two pheromone structures for solving the car sequencing problem with Ant Colony Optimization," European Journal of Operational Research, Elsevier, vol. 191(3), pages 1043-1055, December.
    10. George Steiner & Scott Yeomans, 1993. "Level Schedules for Mixed-Model, Just-in-Time Processes," Management Science, INFORMS, vol. 39(6), pages 728-735, June.
    11. Smith, Kate & Palaniswami, M. & Krishnamoorthy, M., 1996. "Traditional heuristic versus Hopfield neural network approaches to a car sequencing problem," European Journal of Operational Research, Elsevier, vol. 93(2), pages 300-316, September.
    12. Parames Chutima & Karn Jitmetta, 2013. "Adaptive biogeography-based optimisation for two-sided mixed-model assembly line sequencing problems," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 16(4), pages 390-420.
    13. Mansouri, S. Afshin, 2005. "A Multi-Objective Genetic Algorithm for mixed-model sequencing on JIT assembly lines," European Journal of Operational Research, Elsevier, vol. 167(3), pages 696-716, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iwona Paprocka & Damian Krenczyk, 2023. "On Energy Consumption and Productivity in a Mixed-Model Assembly Line Sequencing Problem," Energies, MDPI, vol. 16(20), pages 1-19, October.
    2. Masoud Rabbani & Mahdi Mokhtarzadeh & Neda Manavizadeh & Azadeh Farsi, 2021. "Solving a bi-objective mixed-model assembly-line sequencing using metaheuristic algorithms considering ergonomic factors, customer behavior, and periodic maintenance," OPSEARCH, Springer;Operational Research Society of India, vol. 58(3), pages 513-539, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elahi, Mirza M. Lutfe & Rajpurohit, Karthik & Rosenberger, Jay M. & Zaruba, Gergely & Priest, John, 2015. "Optimizing real-time vehicle sequencing of a paint shop conveyor system," Omega, Elsevier, vol. 55(C), pages 61-72.
    2. Boysen, Nils & Scholl, Armin & Wopperer, Nico, 2012. "Resequencing of mixed-model assembly lines: Survey and research agenda," European Journal of Operational Research, Elsevier, vol. 216(3), pages 594-604.
    3. Uli Golle & Franz Rothlauf & Nils Boysen, 2015. "Iterative beam search for car sequencing," Annals of Operations Research, Springer, vol. 226(1), pages 239-254, March.
    4. Golle, Uli & Rothlauf, Franz & Boysen, Nils, 2014. "Car sequencing versus mixed-model sequencing: A computational study," European Journal of Operational Research, Elsevier, vol. 237(1), pages 50-61.
    5. Iwona Paprocka & Damian Krenczyk, 2023. "On Energy Consumption and Productivity in a Mixed-Model Assembly Line Sequencing Problem," Energies, MDPI, vol. 16(20), pages 1-19, October.
    6. Florian Jaehn & Sergey Kovalev & Mikhail Y. Kovalyov & Erwin Pesch, 2014. "Multiproduct batching and scheduling with buffered rework: The case of a car paint shop," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(6), pages 458-471, September.
    7. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2009. "Sequencing mixed-model assembly lines: Survey, classification and model critique," European Journal of Operational Research, Elsevier, vol. 192(2), pages 349-373, January.
    8. Ioanna Makarouni & John Psarras & Eleftherios Siskos, 2015. "Interactive bicriterion decision support for a large scale industrial scheduling system," Annals of Operations Research, Springer, vol. 227(1), pages 45-61, April.
    9. Rui Zhang, 2017. "Environment-Aware Production Scheduling for Paint Shops in Automobile Manufacturing: A Multi-Objective Optimization Approach," IJERPH, MDPI, vol. 15(1), pages 1-32, December.
    10. Staeblein, Thomas & Aoki, Katsuki, 2015. "Planning and scheduling in the automotive industry: A comparison of industrial practice at German and Japanese makers," International Journal of Production Economics, Elsevier, vol. 162(C), pages 258-272.
    11. Thorben Krueger & Achim Koberstein & Norbert Bittner, 2022. "Anticipating technical car sequencing rules in the master production scheduling of mixed-model assembly lines," Flexible Services and Manufacturing Journal, Springer, vol. 34(2), pages 351-407, June.
    12. Buergin, Jens & Hammerschmidt, Andreas & Hao, Han & Kramer, Sergej & Tutsch, Hansjoerg & Lanza, Gisela, 2019. "Robust order planning with planned orders for multi-variant series production in a production network," International Journal of Production Economics, Elsevier, vol. 210(C), pages 107-119.
    13. Golle, Uli & Boysen, Nils & Rothlauf, Franz, 2010. "Analysis and design of sequencing rules for car sequencing," European Journal of Operational Research, Elsevier, vol. 206(3), pages 579-585, November.
    14. Karim Aroui & Gülgün Alpan & Yannick Frein, 2017. "Minimising work overload in mixed-model assembly lines with different types of operators: a case study from the truck industry," International Journal of Production Research, Taylor & Francis Journals, vol. 55(21), pages 6305-6326, November.
    15. Eivind Jahren & Roberto Asín Achá, 2018. "A column generation approach and new bounds for the car sequencing problem," Annals of Operations Research, Springer, vol. 264(1), pages 193-211, May.
    16. Giard, Vincent & Jeunet, Jully, 2010. "Optimal sequencing of mixed models with sequence-dependent setups and utility workers on an assembly line," International Journal of Production Economics, Elsevier, vol. 123(2), pages 290-300, February.
    17. Bautista, Joaquín & Alfaro, Rocío & Batalla, Cristina, 2015. "Modeling and solving the mixed-model sequencing problem to improve productivity," International Journal of Production Economics, Elsevier, vol. 161(C), pages 83-95.
    18. Sadeghi, Parisa & Rebelo, Rui Diogo & Ferreira, José Soeiro, 2021. "Using variable neighbourhood descent and genetic algorithms for sequencing mixed-model assembly systems in the footwear industry," Operations Research Perspectives, Elsevier, vol. 8(C).
    19. Boysen, Nils & Bock, Stefan, 2011. "Scheduling just-in-time part supply for mixed-model assembly lines," European Journal of Operational Research, Elsevier, vol. 211(1), pages 15-25, May.
    20. C Gagné & M Gravel & S Morin & W L Price, 2008. "Impact of the pheromone trail on the performance of ACO algorithms for solving the car-sequencing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(8), pages 1077-1090, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:29:y:2018:i:7:d:10.1007_s10845-016-1201-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.