IDEAS home Printed from
   My bibliography  Save this article

Combining two pheromone structures for solving the car sequencing problem with Ant Colony Optimization


  • Solnon, Christine


The car sequencing problem involves scheduling cars along an assembly line while satisfying capacity constraints. In this paper, we describe an Ant Colony Optimization (ACO) algorithm for solving this problem, and we introduce two different pheromone structures for this algorithm: the first pheromone structure aims at learning for "good" sequences of cars, whereas the second pheromone structure aims at learning for "critical" cars. We experimentally compare these two pheromone structures, that have complementary performances, and show that their combination allows ants to solve very quickly most instances.

Suggested Citation

  • Solnon, Christine, 2008. "Combining two pheromone structures for solving the car sequencing problem with Ant Colony Optimization," European Journal of Operational Research, Elsevier, vol. 191(3), pages 1043-1055, December.
  • Handle: RePEc:eee:ejores:v:191:y:2008:i:3:p:1043-1055

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Terry Jones & Stephanie Forrest, 1995. "Fitness Distance Correlation as a Measure of Problem Difficulty for Genetic Algorithms," Working Papers 95-02-022, Santa Fe Institute.
    2. B. Bullnheimer & R.F. Hartl & C. Strauss, 1999. "An improved Ant System algorithm for theVehicle Routing Problem," Annals of Operations Research, Springer, vol. 89(0), pages 319-328, January.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Elahi, Mirza M. Lutfe & Rajpurohit, Karthik & Rosenberger, Jay M. & Zaruba, Gergely & Priest, John, 2015. "Optimizing real-time vehicle sequencing of a paint shop conveyor system," Omega, Elsevier, vol. 55(C), pages 61-72.
    2. Parames Chutima & Sathaporn Olarnviwatchai, 0. "A multi-objective car sequencing problem on two-sided assembly lines," Journal of Intelligent Manufacturing, Springer, vol. 0, pages 1-20.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:191:y:2008:i:3:p:1043-1055. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.