IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v210y2011i3p495-513.html
   My bibliography  Save this article

Solving mixed model sequencing problem in assembly lines with serial workstations with work overload minimisation and interruption rules

Author

Listed:
  • Bautista, Joaquín
  • Cano, Alberto

Abstract

In this manuscript, we present a formulation for the MMSP-W (Mixed model sequencing problem with workload minimisation) for production lines with serial workstations. We demonstrate the validity of the basic models in the presence of a control system on the production line that allows the stopping of operations with no restrictions. We propose an extension of the basic models that allows conditioned interruption of operations to facilitate line management. We then propose a procedure to solve the proposed problem through BDP (Bounded Dynamic Programming), and demonstrate its validity through a computational experiment with reference instances and a case study linked to the Nissan powertrain plant in Barcelona.

Suggested Citation

  • Bautista, Joaquín & Cano, Alberto, 2011. "Solving mixed model sequencing problem in assembly lines with serial workstations with work overload minimisation and interruption rules," European Journal of Operational Research, Elsevier, vol. 210(3), pages 495-513, May.
  • Handle: RePEc:eee:ejores:v:210:y:2011:i:3:p:495-513
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00663-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scholl, Armin & Klein, Robert & Domschke, Wolfgang, 1998. "Pattern based vocabulary building for effectively sequencing mixed model assembly lines," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 9365, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    2. Candace Arai Yano & Ram Rachamadugu, 1991. "Sequencing to Minimize Work Overload in Assembly Lines with Product Options," Management Science, INFORMS, vol. 37(5), pages 572-586, May.
    3. Bautista, Joaquin & Pereira, Jordi, 2007. "Ant algorithms for a time and space constrained assembly line balancing problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 2016-2032, March.
    4. N Boysen & M Fliedner, 2006. "Comment on M Gravel, C Gagné and WL Price (2005). Review and comparison of three methods for the solution of the car sequencing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(12), pages 1497-1498, December.
    5. Bautista, Joaquín & Pereira, Jordi, 2009. "A dynamic programming based heuristic for the assembly line balancing problem," European Journal of Operational Research, Elsevier, vol. 194(3), pages 787-794, May.
    6. Bautista, Joaquin & Cano, Jaime, 2008. "Minimizing work overload in mixed-model assembly lines," International Journal of Production Economics, Elsevier, vol. 112(1), pages 177-191, March.
    7. Bautista, J. & Companys, R. & Corominas, A., 1996. "Heuristics and exact algorithms for solving the Monden problem," European Journal of Operational Research, Elsevier, vol. 88(1), pages 101-113, January.
    8. Ding, Fong-Yuen & Zhu, Jin & Sun, Hui, 2006. "Comparing two weighted approaches for sequencing mixed-model assembly lines with multiple objectives," International Journal of Production Economics, Elsevier, vol. 102(1), pages 108-131, July.
    9. H Aigbedo, 2009. "A note on parts inventory and mass customization for a two-stage JIT supply chain with zero-one type of bills of materials," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(9), pages 1286-1291, September.
    10. Li-Hui Tsai, 1995. "Mixed-Model Sequencing to Minimize Utility Work and the Risk of Conveyor Stoppage," Management Science, INFORMS, vol. 41(3), pages 485-495, March.
    11. M Gravel & C Gagné & W L Price, 2005. "Review and comparison of three methods for the solution of the car sequencing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(11), pages 1287-1295, November.
    12. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2009. "Sequencing mixed-model assembly lines: Survey, classification and model critique," European Journal of Operational Research, Elsevier, vol. 192(2), pages 349-373, January.
    13. Xiaobo, Zhao & Ohno, Katsuhisa, 2000. "Properties of a sequencing problem for a mixed model assembly line with conveyor stoppages," European Journal of Operational Research, Elsevier, vol. 124(3), pages 560-570, August.
    14. Gagne, Caroline & Gravel, Marc & Price, Wilson L., 2006. "Solving real car sequencing problems with ant colony optimization," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1427-1448, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kucukkoc, Ibrahim & Zhang, David Z., 2014. "Mathematical model and agent based solution approach for the simultaneous balancing and sequencing of mixed-model parallel two-sided assembly lines," International Journal of Production Economics, Elsevier, vol. 158(C), pages 314-333.
    2. Mosadegh, H. & Fatemi Ghomi, S.M.T. & Süer, G.A., 2020. "Stochastic mixed-model assembly line sequencing problem: Mathematical modeling and Q-learning based simulated annealing hyper-heuristics," European Journal of Operational Research, Elsevier, vol. 282(2), pages 530-544.
    3. Bautista, Joaquín & Alfaro, Rocío & Batalla, Cristina, 2015. "Modeling and solving the mixed-model sequencing problem to improve productivity," International Journal of Production Economics, Elsevier, vol. 161(C), pages 83-95.
    4. Karim Aroui & Gülgün Alpan & Yannick Frein, 2017. "Minimising work overload in mixed-model assembly lines with different types of operators: a case study from the truck industry," International Journal of Production Research, Taylor & Francis Journals, vol. 55(21), pages 6305-6326, November.
    5. Joaquín Bautista-Valhondo & Rocío Alfaro-Pozo, 2020. "Mixed integer linear programming models for Flow Shop Scheduling with a demand plan of job types," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 5-23, March.
    6. Bautista, Joaquín & Cano, Alberto & Alfaro, Rocío, 2012. "Models for MMSP-W considering workstation dependencies: A case study of Nissan’s Barcelona plant," European Journal of Operational Research, Elsevier, vol. 223(3), pages 669-679.
    7. H. Mosadegh & S.M.T. Fatemi Ghomi & G.A. Süer, 2017. "Heuristic approaches for mixed-model sequencing problem with stochastic processing times," International Journal of Production Research, Taylor & Francis Journals, vol. 55(10), pages 2857-2880, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2009. "Sequencing mixed-model assembly lines: Survey, classification and model critique," European Journal of Operational Research, Elsevier, vol. 192(2), pages 349-373, January.
    2. Bautista, Joaquín & Cano, Alberto & Alfaro, Rocío, 2012. "Models for MMSP-W considering workstation dependencies: A case study of Nissan’s Barcelona plant," European Journal of Operational Research, Elsevier, vol. 223(3), pages 669-679.
    3. Bautista, Joaquín & Alfaro, Rocío & Batalla, Cristina, 2015. "Modeling and solving the mixed-model sequencing problem to improve productivity," International Journal of Production Economics, Elsevier, vol. 161(C), pages 83-95.
    4. Bautista, Joaquin & Cano, Jaime, 2008. "Minimizing work overload in mixed-model assembly lines," International Journal of Production Economics, Elsevier, vol. 112(1), pages 177-191, March.
    5. Karim Aroui & Gülgün Alpan & Yannick Frein, 2017. "Minimising work overload in mixed-model assembly lines with different types of operators: a case study from the truck industry," International Journal of Production Research, Taylor & Francis Journals, vol. 55(21), pages 6305-6326, November.
    6. Fliedner, Malte & Boysen, Nils, 2008. "Solving the car sequencing problem via Branch & Bound," European Journal of Operational Research, Elsevier, vol. 191(3), pages 1023-1042, December.
    7. Golle, Uli & Rothlauf, Franz & Boysen, Nils, 2014. "Car sequencing versus mixed-model sequencing: A computational study," European Journal of Operational Research, Elsevier, vol. 237(1), pages 50-61.
    8. Joaquín Bautista & Jordi Pereira & Belarmino Adenso-Díaz, 2008. "A Beam Search approach for the optimization version of the Car Sequencing Problem," Annals of Operations Research, Springer, vol. 159(1), pages 233-244, March.
    9. Bautista, Joaquín & Pereira, Jordi, 2011. "Procedures for the Time and Space constrained Assembly Line Balancing Problem," European Journal of Operational Research, Elsevier, vol. 212(3), pages 473-481, August.
    10. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2009. "The product rate variation problem and its relevance in real world mixed-model assembly lines," European Journal of Operational Research, Elsevier, vol. 197(2), pages 818-824, September.
    11. Tobias Kreiter & Ulrich Pferschy, 2020. "Integer programming models versus advanced planning business software for a multi-level mixed-model assembly line problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(3), pages 1141-1177, September.
    12. Uli Golle & Franz Rothlauf & Nils Boysen, 2015. "Iterative beam search for car sequencing," Annals of Operations Research, Springer, vol. 226(1), pages 239-254, March.
    13. Kucukkoc, Ibrahim & Zhang, David Z., 2014. "Mathematical model and agent based solution approach for the simultaneous balancing and sequencing of mixed-model parallel two-sided assembly lines," International Journal of Production Economics, Elsevier, vol. 158(C), pages 314-333.
    14. F. Tanhaie & M. Rabbani & N. Manavizadeh, 2020. "Applying available-to-promise (ATP) concept in mixed-model assembly line sequencing problems in a Make-To-Order (MTO) environment: problem extension, model formulation and Lagrangian relaxation algori," OPSEARCH, Springer;Operational Research Society of India, vol. 57(2), pages 320-346, June.
    15. Ramírez Palencia, Alberto E. & Mejía Delgadillo, Gonzalo E., 2012. "A computer application for a bus body assembly line using Genetic Algorithms," International Journal of Production Economics, Elsevier, vol. 140(1), pages 431-438.
    16. Ding, Fong-Yuen & Zhu, Jin & Sun, Hui, 2006. "Comparing two weighted approaches for sequencing mixed-model assembly lines with multiple objectives," International Journal of Production Economics, Elsevier, vol. 102(1), pages 108-131, July.
    17. Arnd Huchzermeier & Tobias Mönch, 2023. "Mixed‐model assembly lines with variable takt and open stations," Production and Operations Management, Production and Operations Management Society, vol. 32(3), pages 704-722, March.
    18. Xiaobo Zhao & Katsuhisa Ohno & Hon‐Shiang Lau, 2004. "A balancing problem for mixed model assembly lines with a paced moving conveyor," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(3), pages 446-464, April.
    19. Xiaobo, Zhao & Ohno, Katsuhisa, 2000. "Properties of a sequencing problem for a mixed model assembly line with conveyor stoppages," European Journal of Operational Research, Elsevier, vol. 124(3), pages 560-570, August.
    20. Xiaobo Zhao & Jianyong Liu & Katsuhisa Ohno & Shigenori Kotani, 2007. "Modeling and analysis of a mixed‐model assembly line with stochastic operation times," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(6), pages 681-691, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:210:y:2011:i:3:p:495-513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.