IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v60y2009i9d10.1057_palgrave.jors.2602640.html
   My bibliography  Save this article

A note on parts inventory and mass customization for a two-stage JIT supply chain with zero-one type of bills of materials

Author

Listed:
  • H Aigbedo

    (Oakland University)

Abstract

Mass customizing products for customers in some industries has recently been on the increase. The determination of a sequence schedule for a just-in-time supply chain with an assembly system that makes such products typically aims at minimizing variation in the usage of parts. In many cases, the bills of materials are of a 0–1 type. Based on an objective function often used for smoothing parts usage in practice, we theoretically derive a lower bound on inventory deviation, carry out some associated analyses, and provide useful insights. For example, we find that increasing the degree of mass customization tends to increase the inventory levels of relevant parts in the system. This has practical implications for managing parts with multiple variants in the above environment.

Suggested Citation

  • H Aigbedo, 2009. "A note on parts inventory and mass customization for a two-stage JIT supply chain with zero-one type of bills of materials," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(9), pages 1286-1291, September.
  • Handle: RePEc:pal:jorsoc:v:60:y:2009:i:9:d:10.1057_palgrave.jors.2602640
    DOI: 10.1057/palgrave.jors.2602640
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2602640
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2602640?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John Miltenburg, 1989. "Level Schedules for Mixed-Model Assembly Lines in Just-In-Time Production Systems," Management Science, INFORMS, vol. 35(2), pages 192-207, February.
    2. Alford, Dave & Sackett, Peter & Nelder, Geoff, 2000. "Mass customisation -- an automotive perspective," International Journal of Production Economics, Elsevier, vol. 65(1), pages 99-110, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fogliatto, Flavio S. & da Silveira, Giovani J.C. & Borenstein, Denis, 2012. "The mass customization decade: An updated review of the literature," International Journal of Production Economics, Elsevier, vol. 138(1), pages 14-25.
    2. Bautista, Joaquín & Cano, Alberto, 2011. "Solving mixed model sequencing problem in assembly lines with serial workstations with work overload minimisation and interruption rules," European Journal of Operational Research, Elsevier, vol. 210(3), pages 495-513, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aigbedo, Henry, 2007. "An assessment of the effect of mass customization on suppliers' inventory levels in a JIT supply chain," European Journal of Operational Research, Elsevier, vol. 181(2), pages 704-715, September.
    2. Laurent Lim, Lâm & Alpan, Gülgün & Penz, Bernard, 2014. "Reconciling sales and operations management with distant suppliers in the automotive industry: A simulation approach," International Journal of Production Economics, Elsevier, vol. 151(C), pages 20-36.
    3. Paul Belleflamme & Eric Toulemonde, 2003. "Product differentiation in successive vertical oligopolies," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 36(3), pages 523-545, August.
    4. Albert Corominas & Alberto García-Villoria & Rafael Pastor, 2013. "Metaheuristic algorithms hybridised with variable neighbourhood search for solving the response time variability problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(2), pages 296-312, July.
    5. Kim, Yeong-Dae & Lee, Dong-Ho & Yoon, Chi-Moon, 2001. "Two-stage heuristic algorithms for part input sequencing in flexible manufacturing systems," European Journal of Operational Research, Elsevier, vol. 133(3), pages 624-634, September.
    6. Zhou, Wei & Piramuthu, Selwyn, 2012. "Manufacturing with item-level RFID information: From macro to micro quality control," International Journal of Production Economics, Elsevier, vol. 135(2), pages 929-938.
    7. Lyons, Andrew Charles & Um, Juneho & Sharifi, Hossein, 2020. "Product variety, customisation and business process performance: A mixed-methods approach to understanding their relationships," International Journal of Production Economics, Elsevier, vol. 221(C).
    8. N. Brauner & Y. Crama & A. Grigoriev & J. Klundert, 2005. "A Framework for the Complexity of High-Multiplicity Scheduling Problems," Journal of Combinatorial Optimization, Springer, vol. 9(3), pages 313-323, May.
    9. Giard, Vincent & Jeunet, Jully, 2010. "Optimal sequencing of mixed models with sequence-dependent setups and utility workers on an assembly line," International Journal of Production Economics, Elsevier, vol. 123(2), pages 290-300, February.
    10. Yavuz, Mesut & Tufekci, Suleyman, 2006. "A bounded dynamic programming solution to the batching problem in mixed-model just-in-time manufacturing systems," International Journal of Production Economics, Elsevier, vol. 103(2), pages 841-862, October.
    11. Bautista, Joaquín & Alfaro, Rocío & Batalla, Cristina, 2015. "Modeling and solving the mixed-model sequencing problem to improve productivity," International Journal of Production Economics, Elsevier, vol. 161(C), pages 83-95.
    12. Daniela D. Viana & Iris D. Tommelein & Carlos T. Formoso, 2017. "Using Modularity to Reduce Complexity of Industrialized Building Systems for Mass Customization," Energies, MDPI, vol. 10(10), pages 1-17, October.
    13. Heike, G. & Ramulu, M. & Sorenson, E. & Shanahan, P. & Moinzadeh, K., 2001. "Mixed model assembly alternatives for low-volume manufacturing: The case of the aerospace industry," International Journal of Production Economics, Elsevier, vol. 72(2), pages 103-120, July.
    14. Alexander Grigoriev & Martijn Holthuijsen & Joris van de Klundert, 2005. "Basic scheduling problems with raw material constraints," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(6), pages 527-535, September.
    15. Bollapragada, Srinivas & Bussieck, Michael & Mallik, Suman, 2002. "Scheduling Commercial Videotapes in Broadcast Television," Working Papers 02-0127, University of Illinois at Urbana-Champaign, College of Business.
    16. MacCarthy, Bart & Brabazon, Philip G. & Bramham, Johanna, 2003. "Fundamental modes of operation for mass customization," International Journal of Production Economics, Elsevier, vol. 85(3), pages 289-304, September.
    17. Baoxi Wang & Zailin Guan & Saif Ullah & Xianhao Xu & Zongdong He, 2017. "Simultaneous order scheduling and mixed-model sequencing in assemble-to-order production environment: a multi-objective hybrid artificial bee colony algorithm," Journal of Intelligent Manufacturing, Springer, vol. 28(2), pages 419-436, February.
    18. Sadeghi, Parisa & Rebelo, Rui Diogo & Ferreira, José Soeiro, 2021. "Using variable neighbourhood descent and genetic algorithms for sequencing mixed-model assembly systems in the footwear industry," Operations Research Perspectives, Elsevier, vol. 8(C).
    19. Paul Belleflamme & Eric Toulemonde, 2003. "Product differentiation in successive vertical oligopolies," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 36(3), pages 523-545, August.
    20. Cecília G. da Rocha & Carlos T. Formoso & Patrícia Tzortzopoulos, 2015. "Adopting Product Modularity in House Building to Support Mass Customisation," Sustainability, MDPI, vol. 7(5), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:60:y:2009:i:9:d:10.1057_palgrave.jors.2602640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.