IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v225y2013i1p21-35.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Robust strategies for facility location under uncertainty

Author

Listed:
  • Gülpınar, Nalan
  • Pachamanova, Dessislava
  • Çanakoğlu, Ethem

Abstract

This paper considers a stochastic facility location problem in which multiple capacitated facilities serve customers with a single product, and a stockout probabilistic requirement is stated as a chance constraint. Customer demand is assumed to be uncertain and to follow either a normal or an ambiguous distribution. We study robust approximations to the problem in order to incorporate information about the random demand distribution in the best possible, computationally tractable way. We also discuss how a decision maker’s risk preferences can be incorporated in the problem through robust optimization. Finally, we present numerical experiments that illustrate the performance of the different robust formulations. Robust optimization strategies for facility location appear to have better worst-case performance than nonrobust strategies. They also outperform nonrobust strategies in terms of realized average total cost when the actual demand distributions have higher expected values than the expected values used as input to the optimization models.

Suggested Citation

  • Gülpınar, Nalan & Pachamanova, Dessislava & Çanakoğlu, Ethem, 2013. "Robust strategies for facility location under uncertainty," European Journal of Operational Research, Elsevier, vol. 225(1), pages 21-35.
  • Handle: RePEc:eee:ejores:v:225:y:2013:i:1:p:21-35
    DOI: 10.1016/j.ejor.2012.08.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221712006042
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2012.08.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    2. Berman, Oded & Krass, Dmitry & Tajbakhsh, M. Mahdi, 2012. "A coordinated location-inventory model," European Journal of Operational Research, Elsevier, vol. 217(3), pages 500-508.
    3. Owen, Susan Hesse & Daskin, Mark S., 1998. "Strategic facility location: A review," European Journal of Operational Research, Elsevier, vol. 111(3), pages 423-447, December.
    4. Dimitris Bertsimas & David B. Brown, 2009. "Constructing Uncertainty Sets for Robust Linear Optimization," Operations Research, INFORMS, vol. 57(6), pages 1483-1495, December.
    5. Karthik Natarajan & Dessislava Pachamanova & Melvyn Sim, 2009. "Constructing Risk Measures from Uncertainty Sets," Operations Research, INFORMS, vol. 57(5), pages 1129-1141, October.
    6. Zuo-Jun Max Shen & Mark S. Daskin, 2005. "Trade-offs Between Customer Service and Cost in Integrated Supply Chain Design," Manufacturing & Service Operations Management, INFORMS, vol. 7(3), pages 188-207, September.
    7. Laurent El Ghaoui & Maksim Oks & Francois Oustry, 2003. "Worst-Case Value-At-Risk and Robust Portfolio Optimization: A Conic Programming Approach," Operations Research, INFORMS, vol. 51(4), pages 543-556, August.
    8. ,, 2000. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 16(2), pages 287-299, April.
    9. Zuo-Jun Max Shen & Collette Coullard & Mark S. Daskin, 2003. "A Joint Location-Inventory Model," Transportation Science, INFORMS, vol. 37(1), pages 40-55, February.
    10. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    11. Santoso, Tjendera & Ahmed, Shabbir & Goetschalckx, Marc & Shapiro, Alexander, 2005. "A stochastic programming approach for supply chain network design under uncertainty," European Journal of Operational Research, Elsevier, vol. 167(1), pages 96-115, November.
    12. D. Goldfarb & G. Iyengar, 2003. "Robust Portfolio Selection Problems," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 1-38, February.
    13. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    14. Mark Daskin & Collette Coullard & Zuo-Jun Shen, 2002. "An Inventory-Location Model: Formulation, Solution Algorithm and Computational Results," Annals of Operations Research, Springer, vol. 110(1), pages 83-106, February.
    15. Karthik Natarajan & Dessislava Pachamanova & Melvyn Sim, 2008. "Incorporating Asymmetric Distributional Information in Robust Value-at-Risk Optimization," Management Science, INFORMS, vol. 54(3), pages 573-585, March.
    16. Xin Chen & Melvyn Sim & Peng Sun, 2007. "A Robust Optimization Perspective on Stochastic Programming," Operations Research, INFORMS, vol. 55(6), pages 1058-1071, December.
    17. Aharon, Ben-Tal & Boaz, Golany & Shimrit, Shtern, 2009. "Robust multi-echelon multi-period inventory control," European Journal of Operational Research, Elsevier, vol. 199(3), pages 922-935, December.
    18. Jia Shu & Chung-Piaw Teo & Zuo-Jun Max Shen, 2005. "Stochastic Transportation-Inventory Network Design Problem," Operations Research, INFORMS, vol. 53(1), pages 48-60, February.
    19. Yao, Zhishuang & Lee, Loo Hay & Jaruphongsa, Wikrom & Tan, Vicky & Hui, Chen Fei, 2010. "Multi-source facility location-allocation and inventory problem," European Journal of Operational Research, Elsevier, vol. 207(2), pages 750-762, December.
    20. Aharon Ben-Tal & Arkadi Nemirovski, 2001. "On Polyhedral Approximations of the Second-Order Cone," Mathematics of Operations Research, INFORMS, vol. 26(2), pages 193-205, May.
    21. Gulpinar, Nalan & Rustem, Berc, 2007. "Robust optimal decisions with imprecise forecasts," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3595-3611, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sandra Cruz Caçador & Pedro Manuel Cortesão Godinho & Joana Maria Pina Cabral Matos Dias, 2022. "A minimax regret portfolio model based on the investor’s utility loss," Operational Research, Springer, vol. 22(1), pages 449-484, March.
    2. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2022. "Robust portfolio selection problems: a comprehensive review," Operational Research, Springer, vol. 22(4), pages 3203-3264, September.
    3. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2021. "Robust Portfolio Selection Problems: A Comprehensive Review," Papers 2103.13806, arXiv.org, revised Jan 2022.
    4. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    5. Aharon Ben-Tal & Dimitris Bertsimas & David B. Brown, 2010. "A Soft Robust Model for Optimization Under Ambiguity," Operations Research, INFORMS, vol. 58(4-part-2), pages 1220-1234, August.
    6. Jang Ho Kim & Woo Chang Kim & Frank J. Fabozzi, 2014. "Recent Developments in Robust Portfolios with a Worst-Case Approach," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 103-121, April.
    7. Ling, Aifan & Sun, Jie & Wang, Meihua, 2020. "Robust multi-period portfolio selection based on downside risk with asymmetrically distributed uncertainty set," European Journal of Operational Research, Elsevier, vol. 285(1), pages 81-95.
    8. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    9. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    10. Huan Xu & Constantine Caramanis & Shie Mannor, 2012. "Optimization Under Probabilistic Envelope Constraints," Operations Research, INFORMS, vol. 60(3), pages 682-699, June.
    11. Panos Xidonas & Ralph Steuer & Christis Hassapis, 2020. "Robust portfolio optimization: a categorized bibliographic review," Annals of Operations Research, Springer, vol. 292(1), pages 533-552, September.
    12. Fernandes, Betina & Street, Alexandre & Valladão, Davi & Fernandes, Cristiano, 2016. "An adaptive robust portfolio optimization model with loss constraints based on data-driven polyhedral uncertainty sets," European Journal of Operational Research, Elsevier, vol. 255(3), pages 961-970.
    13. Gianfranco Guastaroba & Gautam Mitra & M Grazia Speranza, 2011. "Investigating the effectiveness of robust portfolio optimization techniques," Journal of Asset Management, Palgrave Macmillan, vol. 12(4), pages 260-280, September.
    14. Marla, Lavanya & Rikun, Alexander & Stauffer, Gautier & Pratsini, Eleni, 2020. "Robust modeling and planning: Insights from three industrial applications," Operations Research Perspectives, Elsevier, vol. 7(C).
    15. Yongzhen Li & Jia Shu & Miao Song & Jiawei Zhang & Huan Zheng, 2017. "Multisourcing Supply Network Design: Two-Stage Chance-Constrained Model, Tractable Approximations, and Computational Results," INFORMS Journal on Computing, INFORMS, vol. 29(2), pages 287-300, May.
    16. Shishebori, Davood & Yousefi Babadi, Abolghasem, 2015. "Robust and reliable medical services network design under uncertain environment and system disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 268-288.
    17. Joel Goh & Melvyn Sim, 2010. "Distributionally Robust Optimization and Its Tractable Approximations," Operations Research, INFORMS, vol. 58(4-part-1), pages 902-917, August.
    18. Steve Zymler & Daniel Kuhn & Berç Rustem, 2013. "Worst-Case Value at Risk of Nonlinear Portfolios," Management Science, INFORMS, vol. 59(1), pages 172-188, July.
    19. Hussein Naseraldin & Yale T. Herer, 2008. "Integrating the Number and Location of Retail Outlets on a Line with Replenishment Decisions," Management Science, INFORMS, vol. 54(9), pages 1666-1683, September.
    20. Wolfram Wiesemann & Daniel Kuhn & Melvyn Sim, 2014. "Distributionally Robust Convex Optimization," Operations Research, INFORMS, vol. 62(6), pages 1358-1376, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:225:y:2013:i:1:p:21-35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.