IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

VaR methods for the dynamic impawn rate of steel in inventory financing under autocorrelative return

  • Juan, He
  • Xianglin, Jiang
  • Jian, Wang
  • Daoli, Zhu
  • Lei, Zhen
Registered author(s):

    This paper proposes the way of setting the dynamic impawn rate by dividing the impawn periods into different risk windows. In an efficient financial market, the return is hypothetically independent, while in a pledged inventory market where spot transactions predominate, the return is auto-correlative. Therefore, the key to setting the impawn rate is to predict the long-term risk. In this experiment, using the database of spot steel, we established a model with the formula AR (1)-GARCH (1,1)-GED, forecasting the VaR of steel during the different risk windows in the impawn period through a method of out-of-sample, and got the impawn rate according with the risk exposure of banks. The results of our experiment indicated that the introduction of coefficient K into the model can significantly improve bank risk coverage and reduce its efficiency loss. Besides, the impawn rate obtained by the model correlates positively with the lowest price in the future risk windows.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal European Journal of Operational Research.

    Volume (Year): 223 (2012)
    Issue (Month): 1 ()
    Pages: 106-115

    in new window

    Handle: RePEc:eee:ejores:v:223:y:2012:i:1:p:106-115
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    2. Chen, Xiangfeng & Cai, Gangshu (George), 2011. "Joint logistics and financial services by a 3PL firm," European Journal of Operational Research, Elsevier, vol. 214(3), pages 579-587, November.
    3. Lee, Chang Hwan & Rhee, Byong-Duk, 2011. "Trade credit for supply chain coordination," European Journal of Operational Research, Elsevier, vol. 214(1), pages 136-146, October.
    4. John A. Buzacott & Rachel Q. Zhang, 2004. "Inventory Management with Asset-Based Financing," Management Science, INFORMS, vol. 50(9), pages 1274-1292, September.
    5. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
    6. Esa Jokivuolle & Samu Peura, 2003. "Incorporating Collateral Value Uncertainty in Loss Given Default Estimates and Loan-to-value Ratios," European Financial Management, European Financial Management Association, vol. 9(3), pages 299-314.
    7. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
    8. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    9. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-47, August.
    10. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, Elsevier.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:223:y:2012:i:1:p:106-115. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.