IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v223y2012i1p106-115.html
   My bibliography  Save this article

VaR methods for the dynamic impawn rate of steel in inventory financing under autocorrelative return

Author

Listed:
  • Juan, He
  • Xianglin, Jiang
  • Jian, Wang
  • Daoli, Zhu
  • Lei, Zhen

Abstract

This paper proposes the way of setting the dynamic impawn rate by dividing the impawn periods into different risk windows. In an efficient financial market, the return is hypothetically independent, while in a pledged inventory market where spot transactions predominate, the return is auto-correlative. Therefore, the key to setting the impawn rate is to predict the long-term risk. In this experiment, using the database of spot steel, we established a model with the formula AR (1)-GARCH (1,1)-GED, forecasting the VaR of steel during the different risk windows in the impawn period through a method of out-of-sample, and got the impawn rate according with the risk exposure of banks. The results of our experiment indicated that the introduction of coefficient K into the model can significantly improve bank risk coverage and reduce its efficiency loss. Besides, the impawn rate obtained by the model correlates positively with the lowest price in the future risk windows.

Suggested Citation

  • Juan, He & Xianglin, Jiang & Jian, Wang & Daoli, Zhu & Lei, Zhen, 2012. "VaR methods for the dynamic impawn rate of steel in inventory financing under autocorrelative return," European Journal of Operational Research, Elsevier, vol. 223(1), pages 106-115.
  • Handle: RePEc:eee:ejores:v:223:y:2012:i:1:p:106-115
    DOI: 10.1016/j.ejor.2012.06.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221712004602
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    2. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, Elsevier.
    3. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    6. Esa Jokivuolle & Samu Peura, 2003. "Incorporating Collateral Value Uncertainty in Loss Given Default Estimates and Loan-to-value Ratios," European Financial Management, European Financial Management Association, vol. 9(3), pages 299-314.
    7. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    8. Lee, Chang Hwan & Rhee, Byong-Duk, 2011. "Trade credit for supply chain coordination," European Journal of Operational Research, Elsevier, vol. 214(1), pages 136-146, October.
    9. Chen, Xiangfeng & Cai, Gangshu (George), 2011. "Joint logistics and financial services by a 3PL firm," European Journal of Operational Research, Elsevier, vol. 214(3), pages 579-587, November.
    10. John A. Buzacott & Rachel Q. Zhang, 2004. "Inventory Management with Asset-Based Financing," Management Science, INFORMS, vol. 50(9), pages 1274-1292, September.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:223:y:2012:i:1:p:106-115. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/eor .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.