IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v219y2012i2p296-304.html
   My bibliography  Save this article

Multi-state throughput analysis of a two-stage manufacturing system with parallel unreliable machines and a finite buffer

Author

Listed:
  • Liu, Jialu
  • Yang, Sheng
  • Wu, Aiguo
  • Hu, S. Jack

Abstract

This paper models and analyzes the throughput of a two-stage manufacturing system with multiple independent unreliable machines at each stage and one finite-sized buffer between the stages. The machines follow exponential operation, failure, and repair processes. Most of the literature uses binary random variables to model unreliable machines in transfer lines and other production lines. This paper first illustrates the importance of using more than two states to model parallel unreliable machines because of their independent and asynchronous operations in the parallel system. The system balance equations are then formulated based on a set of new notations of vector manipulations, and are transformed into a matrix form fitting the properties of the Quasi-Birth–Death (QBD) process. The Matrix-Analytic (MA) method for solving the generic QBD processes is used to calculate the system state probability and throughput. Numerical cases demonstrate that solution method is fast and accurate in analyzing parallel manufacturing systems, and thus prove the applicability of the new model and the effectiveness of the MA-based method. Such multi-state models and their solution techniques can be used as a building block for analyzing larger, more complex manufacturing systems.

Suggested Citation

  • Liu, Jialu & Yang, Sheng & Wu, Aiguo & Hu, S. Jack, 2012. "Multi-state throughput analysis of a two-stage manufacturing system with parallel unreliable machines and a finite buffer," European Journal of Operational Research, Elsevier, vol. 219(2), pages 296-304.
  • Handle: RePEc:eee:ejores:v:219:y:2012:i:2:p:296-304
    DOI: 10.1016/j.ejor.2011.12.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221711011027
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2011.12.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tancrez, Jean-Sbastien & Semal, Pierre & Chevalier, Philippe, 2009. "Histogram based bounds and approximations for production lines," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1133-1141, September.
    2. Pradhan, Salil & Damodaran, Purushothaman, 2009. "Performance characterization of complex manufacturing systems with general distributions and job failures," European Journal of Operational Research, Elsevier, vol. 197(2), pages 588-598, September.
    3. Tan, BarIs & Gershwin, Stanley B., 2009. "Analysis of a general Markovian two-stage continuous-flow production system with a finite buffer," International Journal of Production Economics, Elsevier, vol. 120(2), pages 327-339, August.
    4. Sheng Yang & Cheng Wu & S. Hu, 2000. "Modeling and analysis of multi‐stage transfer lines with unreliable machines and finite buffers," Annals of Operations Research, Springer, vol. 93(1), pages 405-421, January.
    5. Sorensen, Kenneth & Janssens, Gerrit K., 2004. "A Petri net model of a continuous flow transfer line with unreliable machines," European Journal of Operational Research, Elsevier, vol. 152(1), pages 248-262, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song Jiu, 2021. "A two-phase approach for integrating preventive maintenance with production and delivery in an unreliable coal mine," Journal of Heuristics, Springer, vol. 27(6), pages 991-1020, December.
    2. Zhu, Juanxiu & Hu, Lu & Jiang, Yangsheng & Khattak, Afaq, 2017. "Circulation network design for urban rail transit station using a PH(n)/PH(n)/C/C queuing network model," European Journal of Operational Research, Elsevier, vol. 260(3), pages 1043-1068.
    3. Zhao, Yaping & Xu, Xiaoyun & Li, Haidong & Liu, Yanni, 2016. "Prioritized customer order scheduling to maximize throughput," European Journal of Operational Research, Elsevier, vol. 255(2), pages 345-356.
    4. Zhang, Yongjin & Zhao, Ming & Zhang, Yanjun & Pan, Ruilin & Cai, Jing, 2020. "Dynamic and steady-state performance analysis for multi-state repairable reconfigurable manufacturing systems with buffers," European Journal of Operational Research, Elsevier, vol. 283(2), pages 491-510.
    5. Jean-Sébastien Tancrez, 2020. "A decomposition method for assembly/disassembly systems with blocking and general distributions," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 272-296, June.
    6. Wu, Kan, 2014. "Taxonomy of batch queueing models in manufacturing systems," European Journal of Operational Research, Elsevier, vol. 237(1), pages 129-135.
    7. Chen, Shih-Pin, 2016. "Time value of delays in unreliable production systems with mixed uncertainties of fuzziness and randomness," European Journal of Operational Research, Elsevier, vol. 255(3), pages 834-844.
    8. Konstantinos S. Boulas & Georgios D. Dounias & Chrissoleon T. Papadopoulos, 2023. "A hybrid evolutionary algorithm approach for estimating the throughput of short reliable approximately balanced production lines," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 823-852, February.
    9. Hu, Lu & Jiang, Yangsheng & Zhu, Juanxiu & Chen, Yanru, 2015. "A PH/PH(n)/C/C state-dependent queuing model for metro station corridor width design," European Journal of Operational Research, Elsevier, vol. 240(1), pages 109-126.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hulett, Maria & Damodaran, Purushothaman, 2011. "Analytical approximations to predict performance measures of markovian type manufacturing systems with job failures and parallel processing," European Journal of Operational Research, Elsevier, vol. 212(1), pages 89-99, July.
    2. Shraga Shoval & Mahmoud Efatmaneshnik & Michael J. Ryan, 2017. "Assembly sequence planning for processes with heterogeneous reliabilities," International Journal of Production Research, Taylor & Francis Journals, vol. 55(10), pages 2806-2828, May.
    3. Cruz, F.R.B. & Van Woensel, T. & Smith, J. MacGregor, 2010. "Buffer and throughput trade-offs in M/G/1/K queueing networks: A bi-criteria approach," International Journal of Production Economics, Elsevier, vol. 125(2), pages 224-234, June.
    4. Zhang, Yongjin & Zhao, Ming & Zhang, Yanjun & Pan, Ruilin & Cai, Jing, 2020. "Dynamic and steady-state performance analysis for multi-state repairable reconfigurable manufacturing systems with buffers," European Journal of Operational Research, Elsevier, vol. 283(2), pages 491-510.
    5. Zhang, Ning & Qi, Faqun & Zhang, Chengjie & Zhou, Hongming, 2022. "Joint optimization of condition-based maintenance policy and buffer capacity for a two-unit series system," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    6. Jean-Sébastien Tancrez & Philippe Chevalier & Pierre Semal, 2011. "Probability masses fitting in the analysis of manufacturing flow lines," Annals of Operations Research, Springer, vol. 182(1), pages 163-191, January.
    7. Damodaran, Purushothaman & Hulett, Maria, 2012. "Analytical approximations to predict performance measures of manufacturing systems with general distributions, job failures and parallel processing," European Journal of Operational Research, Elsevier, vol. 221(1), pages 74-86.
    8. Barış Tan, 2019. "Production Control with Price, Cost, and Demand Uncertainty," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(4), pages 1057-1085, December.
    9. Ünsal Özdoğru & Tayfur Altiok, 2015. "Continuous material flow systems: analysis of marine ports handling bulk materials," Annals of Operations Research, Springer, vol. 231(1), pages 79-104, August.
    10. Yaghoubi, Saeed & Noori, Siamak & Azaron, Amir & Fynes, Brian, 2015. "Resource allocation in multi-class dynamic PERT networks with finite capacity," European Journal of Operational Research, Elsevier, vol. 247(3), pages 879-894.
    11. Andrea Matta & Francesca Simone, 2016. "Analysis of two-machine lines with finite buffer, operation-dependent and time-dependent failure modes," International Journal of Production Research, Taylor & Francis Journals, vol. 54(6), pages 1850-1862, March.
    12. Belmansour, Ahmed-Tidjani & Nourelfath, Mustapha, 2010. "An aggregation method for performance evaluation of a tandem homogenous production line with machines having multiple failure modes," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1193-1201.
    13. Wei, Shuaichong & Nourelfath, Mustapha & Nahas, Nabil, 2023. "Analysis of a production line subject to degradation and preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    14. Jenab, K. & Sarfaraz, A. & Dhillon, B.S. & Seyed Hosseini, S.M., 2012. "Dynamic MLD analysis with flow graphs," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 80-85.
    15. Kucuksayacigil, Fikri & Roni, Mohammad & Eksioglu, Sandra D. & Bhuiyan, Tanveer H. & Chen, Qiushi, 2022. "Optimal control to handle variations in moisture content and reactor in-feed rate," Energy, Elsevier, vol. 248(C).
    16. Kolb, Oliver & Göttlich, Simone, 2015. "A continuous buffer allocation model using stochastic processes," European Journal of Operational Research, Elsevier, vol. 242(3), pages 865-874.
    17. Barış Tan & Stanley Gershwin, 2011. "Modelling and analysis of Markovian continuous flow systems with a finite buffer," Annals of Operations Research, Springer, vol. 182(1), pages 5-30, January.
    18. Elisa Gebennini & Andrea Grassi & Cesare Fantuzzi, 2015. "The two-machine one-buffer continuous time model with restart policy," Annals of Operations Research, Springer, vol. 231(1), pages 33-64, August.
    19. Fitouhi, Mohamed-Chahir & Nourelfath, Mustapha & Gershwin, Stanley B., 2017. "Performance evaluation of a two-machine line with a finite buffer and condition-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 61-72.
    20. Marcello Colledani & Tullio Tolio, 2011. "Performance evaluation of transfer lines with general repair times and multiple failure modes," Annals of Operations Research, Springer, vol. 182(1), pages 31-65, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:219:y:2012:i:2:p:296-304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.