IDEAS home Printed from https://ideas.repec.org/p/cor/louvrp/2163.html
   My bibliography  Save this paper

Histogram based bounds and approximations for production lines

Author

Listed:
  • TRAZNCREZ, Jean-Sébastien
  • SEMAL, Pierre
  • CHEVALIER, Philippe

Abstract

We present a modelling method for the analysis of production lines with generally distributed processing times and finite buffers. We consider the complete modelling process, from the data collection to the performance evaluation. First, the data about the processing times is supposed to be collected in the form of histograms. Second, tractable discrete phase-type distributions are built. Third, the evolution of the production line is described by a Markov chain, using a state model. Our originality mostly comes from the way the phase-type distributions are built: the "grouping at the end" discretization aggregates the probability mass in a time step at its end. The method allows to compute refinable upper and lower bounds on the throughput. Furthermore, we propose some approximations and show how the method performs on simple examples. We argue that the way the distributions are discretized, called "probability masses fitting", can be thought as a valuable alternative in order to build tractable distributions.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • TRAZNCREZ, Jean-Sébastien & SEMAL, Pierre & CHEVALIER, Philippe, 2009. "Histogram based bounds and approximations for production lines," LIDAM Reprints CORE 2163, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvrp:2163
    DOI: 10.1016/j.ejor.2008.03.032
    Note: In : European Journal of Operational Research, 197, 1133-1141, 2009
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Papadopoulos, H. T. & Heavey, C., 1996. "Queueing theory in manufacturing systems analysis and design: A classification of models for production and transfer lines," European Journal of Operational Research, Elsevier, vol. 92(1), pages 1-27, July.
    2. Kerbache, Laoucine & Smith, J. MacGregor, 2000. "Multi-objective routing within large scale facilities using open finite queueing networks," European Journal of Operational Research, Elsevier, vol. 121(1), pages 105-123, February.
    3. Gourgand, Michel & Grangeon, Nathalie & Norre, Sylvie, 2005. "Markovian analysis for performance evaluation and scheduling in m machine stochastic flow-shop with buffers of any capacity," European Journal of Operational Research, Elsevier, vol. 161(1), pages 126-147, February.
    4. Yves Dallery & Yannick Frein, 1993. "On Decomposition Methods for Tandem Queueing Networks with Blocking," Operations Research, INFORMS, vol. 41(2), pages 386-399, April.
    5. C Dinçer & B Deler, 2000. "On the distribution of throughput of transfer lines," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(10), pages 1170-1178, October.
    6. Laoucine Kerbache & J. Macgregor Smith, 2000. "Multi-objective routing within large scale facilities using open finite queueing networks," Post-Print hal-00798811, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jean-Sébastien Tancrez & Philippe Chevalier & Pierre Semal, 2011. "Probability masses fitting in the analysis of manufacturing flow lines," Annals of Operations Research, Springer, vol. 182(1), pages 163-191, January.
    2. Liu, Jialu & Yang, Sheng & Wu, Aiguo & Hu, S. Jack, 2012. "Multi-state throughput analysis of a two-stage manufacturing system with parallel unreliable machines and a finite buffer," European Journal of Operational Research, Elsevier, vol. 219(2), pages 296-304.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Osorio, Carolina & Bierlaire, Michel, 2012. "A tractable analytical model for large-scale congested protein synthesis networks," European Journal of Operational Research, Elsevier, vol. 219(3), pages 588-597.
    2. Azaron, Amir & Katagiri, Hideki & Kato, Kosuke & Sakawa, Masatoshi, 2006. "Modelling complex assemblies as a queueing network for lead time control," European Journal of Operational Research, Elsevier, vol. 174(1), pages 150-168, October.
    3. Osorio, Carolina & Bierlaire, Michel, 2009. "An analytic finite capacity queueing network model capturing the propagation of congestion and blocking," European Journal of Operational Research, Elsevier, vol. 196(3), pages 996-1007, August.
    4. Jean-Sébastien Tancrez, 2020. "A decomposition method for assembly/disassembly systems with blocking and general distributions," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 272-296, June.
    5. Agarwal, Y.K. & Aneja, Y.P. & Jayaswal, Sachin, 2022. "Directed fixed charge multicommodity network design: A cutting plane approach using polar duality," European Journal of Operational Research, Elsevier, vol. 299(1), pages 118-136.
    6. Chen, Shih-Pin, 2004. "Parametric nonlinear programming for analyzing fuzzy queues with finite capacity," European Journal of Operational Research, Elsevier, vol. 157(2), pages 429-438, September.
    7. Korporaal, R. & Ridder, A.A.N. & Kloprogge, P. & Dekker, R., 1999. "Capacity planning of prisons in the Netherlands," Econometric Institute Research Papers EI 9909-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    8. Wu, Kan & McGinnis, Leon, 2012. "Performance evaluation for general queueing networks in manufacturing systems: Characterizing the trade-off between queue time and utilization," European Journal of Operational Research, Elsevier, vol. 221(2), pages 328-339.
    9. Chen, Shih-Pin, 2007. "Solving fuzzy queueing decision problems via a parametric mixed integer nonlinear programming method," European Journal of Operational Research, Elsevier, vol. 177(1), pages 445-457, February.
    10. Morabito, Reinaldo & de Souza, Mauricio C. & Vazquez, Mariana, 2014. "Approximate decomposition methods for the analysis of multicommodity flow routing in generalized queuing networks," European Journal of Operational Research, Elsevier, vol. 232(3), pages 618-629.
    11. Papadopoulos, H. T. & Vidalis, M. I., 2001. "Minimizing WIP inventory in reliable production lines," International Journal of Production Economics, Elsevier, vol. 70(2), pages 185-197, March.
    12. Hui-Yu Zhang & Qing-Xin Chen & James MacGregor Smith & Ning Mao & Ai-Lin Yu & Zhan-Tao Li, 2017. "Performance analysis of open general queuing networks with blocking and feedback," International Journal of Production Research, Taylor & Francis Journals, vol. 55(19), pages 5760-5781, October.
    13. Kerbache, Laoucine & MacGregor Smith, James, 2004. "Queueing networks and the topological design of supply chain systems," International Journal of Production Economics, Elsevier, vol. 91(3), pages 251-272, October.
    14. Osorio, Carolina & Wang, Carter, 2017. "On the analytical approximation of joint aggregate queue-length distributions for traffic networks: A stationary finite capacity Markovian network approach," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 305-339.
    15. Yunyue He & Zhong Liu & Jianmai Shi & Yishan Wang & Jiaming Zhang & Jinyuan Liu, 2015. "K-Shortest-Path-Based Evacuation Routing with Police Resource Allocation in City Transportation Networks," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-23, July.
    16. Jean-Sébastien Tancrez & Philippe Chevalier & Pierre Semal, 2011. "Probability masses fitting in the analysis of manufacturing flow lines," Annals of Operations Research, Springer, vol. 182(1), pages 163-191, January.
    17. Hughes, Michael S. & Lunday, Brian J. & Weir, Jeffrey D. & Hopkinson, Kenneth M., 2021. "The multiple shortest path problem with path deconfliction," European Journal of Operational Research, Elsevier, vol. 292(3), pages 818-829.
    18. Stepanov, Alexander & Smith, James MacGregor, 2009. "Multi-objective evacuation routing in transportation networks," European Journal of Operational Research, Elsevier, vol. 198(2), pages 435-446, October.
    19. Osorio, Carolina & Flötteröd, Gunnar & Bierlaire, Michel, 2011. "Dynamic network loading: A stochastic differentiable model that derives link state distributions," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1410-1423.
    20. Pourvaziri, Hani & Pierreval, Henri, 2017. "Dynamic facility layout problem based on open queuing network theory," European Journal of Operational Research, Elsevier, vol. 259(2), pages 538-553.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvrp:2163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.