IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v299y2022i1p118-136.html
   My bibliography  Save this article

Directed fixed charge multicommodity network design: A cutting plane approach using polar duality

Author

Listed:
  • Agarwal, Y.K.
  • Aneja, Y.P.
  • Jayaswal, Sachin

Abstract

We present an efficient cutting-plane based approach to exactly solve a directed fixed charge network design (DFCND) problem, wherein the valid inequalities to the problem are generated using the polar duality approach. The biggest challenge in using this approach arises in constructing the polar dual of the problem. This would require enumerating all the extreme points of the convex hull of DFCND, which is computationally impractical for any instance of a reasonable size. Moreover, the resulting polar dual would be too large to solve efficiently, which is required at every iteration of the cutting-plane algorithm. The novelty of our solution approach lies in suggesting a way to circumvent this challenge by instead generating the violated facets, using polar duality, of the smaller substructures involving only a small subset of constraints and variables, obtained from 2-, 3-and 4-partitions of the underlying graph. For problem instances based on sparse graphs with zero flow costs, addition of these inequalities closes more than 20% of the optimality gap remaining after the addition of the knapsack cover inequalities used in the literature. This allows us to solve the problem instances in less than 400 s, on average, which otherwise take around 1000 s with the addition of only the knapsack cover inequalities, and around 4 hours for the Cplex MIP solver at its default setting.

Suggested Citation

  • Agarwal, Y.K. & Aneja, Y.P. & Jayaswal, Sachin, 2022. "Directed fixed charge multicommodity network design: A cutting plane approach using polar duality," European Journal of Operational Research, Elsevier, vol. 299(1), pages 118-136.
  • Handle: RePEc:eee:ejores:v:299:y:2022:i:1:p:118-136
    DOI: 10.1016/j.ejor.2021.08.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721007359
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.08.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paraskevopoulos, Dimitris C. & Bektaş, Tolga & Crainic, Teodor Gabriel & Potts, Chris N., 2016. "A cycle-based evolutionary algorithm for the fixed-charge capacitated multi-commodity network design problem," European Journal of Operational Research, Elsevier, vol. 253(2), pages 265-279.
    2. Ilfat Ghamlouche & Teodor Crainic & Michel Gendreau, 2004. "Path Relinking, Cycle-Based Neighbourhoods and Capacitated Multicommodity Network Design," Annals of Operations Research, Springer, vol. 131(1), pages 109-133, October.
    3. T. L. Magnanti & R. T. Wong, 1984. "Network Design and Transportation Planning: Models and Algorithms," Transportation Science, INFORMS, vol. 18(1), pages 1-55, February.
    4. Kaj Holmberg & Di Yuan, 2000. "A Lagrangian Heuristic Based Branch-and-Bound Approach for the Capacitated Network Design Problem," Operations Research, INFORMS, vol. 48(3), pages 461-481, June.
    5. Yogesh Agarwal, 2013. "Design of Survivable Networks Using Three- and Four-Partition Facets," Operations Research, INFORMS, vol. 61(1), pages 199-213, February.
    6. Gendron, Bernard & Hanafi, Saïd & Todosijević, Raca, 2018. "Matheuristics based on iterative linear programming and slope scaling for multicommodity capacitated fixed charge network design," European Journal of Operational Research, Elsevier, vol. 268(1), pages 70-81.
    7. E. Andrew Boyd, 1994. "Fenchel Cutting Planes for Integer Programs," Operations Research, INFORMS, vol. 42(1), pages 53-64, February.
    8. Agarwal, Y.K. & Aneja, Y.P., 2017. "Fixed charge multicommodity network design using p-partition facets," European Journal of Operational Research, Elsevier, vol. 258(1), pages 124-135.
    9. Kerbache, Laoucine & Smith, J. MacGregor, 2000. "Multi-objective routing within large scale facilities using open finite queueing networks," European Journal of Operational Research, Elsevier, vol. 121(1), pages 105-123, February.
    10. Sune Lauth Gadegaard & Andreas Klose & Lars Relund Nielsen, 2018. "An improved cut-and-solve algorithm for the single-source capacitated facility location problem," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 1-27, March.
    11. M Yaghini & M Rahbar & M Karimi, 2013. "A hybrid simulated annealing and column generation approach for capacitated multicommodity network design," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(7), pages 1010-1020, July.
    12. Sridhar, Varadharajan & Park, June S., 2000. "Benders-and-cut algorithm for fixed-charge capacitated network design problem," European Journal of Operational Research, Elsevier, vol. 125(3), pages 622-632, September.
    13. Alysson Costa & Jean-François Cordeau & Bernard Gendron, 2009. "Benders, metric and cutset inequalities for multicommodity capacitated network design," Computational Optimization and Applications, Springer, vol. 42(3), pages 371-392, April.
    14. ORTEGA , Francisco & WOLSEY, Laurence A., 2003. "A branch-and-cut algorithm for the single-commodity, uncapacitated, fixed-charge network flow problem," LIDAM Reprints CORE 1611, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    15. Rardin, Ronald L. & Wolsey, Laurence A., 1993. "Valid inequalities and projecting the multicommodity extended formulation for uncapacitated fixed charge network flow problems," European Journal of Operational Research, Elsevier, vol. 71(1), pages 95-109, November.
    16. Daniel Bienstock & Oktay Günlük, 1996. "Capacitated Network Design---Polyhedral Structure and Computation," INFORMS Journal on Computing, INFORMS, vol. 8(3), pages 243-259, August.
    17. Laoucine Kerbache & J. Macgregor Smith, 2000. "Multi-objective routing within large scale facilities using open finite queueing networks," Post-Print hal-00798811, HAL.
    18. Mike Hewitt & George L. Nemhauser & Martin W. P. Savelsbergh, 2010. "Combining Exact and Heuristic Approaches for the Capacitated Fixed-Charge Network Flow Problem," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 314-325, May.
    19. BIENSTOCK, Daniel & CHOPRA, Sunil & GÜNLÜK, Oktay & TSAI, Chih-Yang, 1998. "Minimum cost capacity installation for multicommodity network flows," LIDAM Reprints CORE 1391, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    20. Ilfat Ghamlouche & Teodor Gabriel Crainic & Michel Gendreau, 2003. "Cycle-Based Neighbourhoods for Fixed-Charge Capacitated Multicommodity Network Design," Operations Research, INFORMS, vol. 51(4), pages 655-667, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mervat Chouman & Teodor Gabriel Crainic & Bernard Gendron, 2018. "The impact of filtering in a branch-and-cut algorithm for multicommodity capacitated fixed charge network design," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(2), pages 143-184, June.
    2. Gendron, Bernard & Hanafi, Saïd & Todosijević, Raca, 2018. "Matheuristics based on iterative linear programming and slope scaling for multicommodity capacitated fixed charge network design," European Journal of Operational Research, Elsevier, vol. 268(1), pages 70-81.
    3. Mervat Chouman & Teodor Gabriel Crainic & Bernard Gendron, 2017. "Commodity Representations and Cut-Set-Based Inequalities for Multicommodity Capacitated Fixed-Charge Network Design," Transportation Science, INFORMS, vol. 51(2), pages 650-667, May.
    4. Fragkos, Ioannis & Cordeau, Jean-François & Jans, Raf, 2021. "Decomposition methods for large-scale network expansion problems," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 60-80.
    5. Masoud Yaghini & Mohammad Karimi & Mohadeseh Rahbar & Mohammad Hassan Sharifitabar, 2015. "A Cutting-Plane Neighborhood Structure for Fixed-Charge Capacitated Multicommodity Network Design Problem," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 48-58, February.
    6. Stefan Gollowitzer & Bernard Gendron & Ivana Ljubić, 2013. "A cutting plane algorithm for the Capacitated Connected Facility Location Problem," Computational Optimization and Applications, Springer, vol. 55(3), pages 647-674, July.
    7. Keely L. Croxton & Bernard Gendron & Thomas L. Magnanti, 2007. "Variable Disaggregation in Network Flow Problems with Piecewise Linear Costs," Operations Research, INFORMS, vol. 55(1), pages 146-157, February.
    8. SteadieSeifi, M. & Dellaert, N.P. & Nuijten, W. & Van Woensel, T., 2017. "A metaheuristic for the multimodal network flow problem with product quality preservation and empty repositioning," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 321-344.
    9. Ahmad I. Jarrah & Ellis Johnson & Lucas C. Neubert, 2009. "Large-Scale, Less-than-Truckload Service Network Design," Operations Research, INFORMS, vol. 57(3), pages 609-625, June.
    10. Li, Xiangyong & Wei, Kai & Aneja, Y.P. & Tian, Peng, 2017. "Design-balanced capacitated multicommodity network design with heterogeneous assets," Omega, Elsevier, vol. 67(C), pages 145-159.
    11. Tobias Harks & Felix G. König & Jannik Matuschke & Alexander T. Richter & Jens Schulz, 2016. "An Integrated Approach to Tactical Transportation Planning in Logistics Networks," Transportation Science, INFORMS, vol. 50(2), pages 439-460, May.
    12. Ahmad Baubaid & Natashia Boland & Martin Savelsbergh, 2021. "The Value of Limited Flexibility in Service Network Designs," Transportation Science, INFORMS, vol. 55(1), pages 52-74, 1-2.
    13. Endong Zhu & Teodor Gabriel Crainic & Michel Gendreau, 2014. "Scheduled Service Network Design for Freight Rail Transportation," Operations Research, INFORMS, vol. 62(2), pages 383-400, April.
    14. Bernard Gendron & Luis Gouveia, 2017. "Reformulations by Discretization for Piecewise Linear Integer Multicommodity Network Flow Problems," Transportation Science, INFORMS, vol. 51(2), pages 629-649, May.
    15. Rodriguez-Martin, Inmaculada & Salazar-Gonzalez, Juan Jose, 2008. "Solving a capacitated hub location problem," European Journal of Operational Research, Elsevier, vol. 184(2), pages 468-479, January.
    16. Andrew P. Armacost & Cynthia Barnhart & Keith A. Ware, 2002. "Composite Variable Formulations for Express Shipment Service Network Design," Transportation Science, INFORMS, vol. 36(1), pages 1-20, February.
    17. Alan Erera & Michael Hewitt & Martin Savelsbergh & Yang Zhang, 2013. "Improved Load Plan Design Through Integer Programming Based Local Search," Transportation Science, INFORMS, vol. 47(3), pages 412-427, August.
    18. Majid Taghavi & Kai Huang, 2016. "A multi‐stage stochastic programming approach for network capacity expansion with multiple sources of capacity," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(8), pages 600-614, December.
    19. Dayarian, Iman & Rocco, Adolfo & Erera, Alan & Savelsbergh, Martin, 2022. "Operations design for high-velocity intra-city package service," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 150-168.
    20. Mike Hewitt & George L. Nemhauser & Martin W. P. Savelsbergh, 2010. "Combining Exact and Heuristic Approaches for the Capacitated Fixed-Charge Network Flow Problem," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 314-325, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:299:y:2022:i:1:p:118-136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.