IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v192y2024ics136655452400396x.html
   My bibliography  Save this article

Combining supervised learning and local search for the multicommodity capacitated fixed-charge network design problem

Author

Listed:
  • Robinson La Rocca, Charly
  • Cordeau, Jean-François
  • Frejinger, Emma

Abstract

The multicommodity capacitated fixed-charge network design problem has been extensively studied in the literature due to its wide range of applications. Despite the fact that many sophisticated solution methods exist today, finding high-quality solutions to large-scale instances remains challenging. In this paper, we explore how a data-driven approach can help improve upon the state of the art. By leveraging machine learning models, we attempt to reveal patterns hidden in the data that might be difficult to capture with traditional optimization methods. For scalability, we propose a prediction method where the machine learning model is called at the level of each arc of the graph. We take advantage of off-the-shelf models trained via supervised learning to predict near-optimal solutions. Our experimental results include an algorithm design analysis that compares various integration strategies of predictions within local search algorithms. We benchmark the ML-based approach with respect to the state-of-the-art heuristic for this problem. The findings indicate that our method can outperform the leading heuristic on sets of instances sampled from a uniform distribution.

Suggested Citation

  • Robinson La Rocca, Charly & Cordeau, Jean-François & Frejinger, Emma, 2024. "Combining supervised learning and local search for the multicommodity capacitated fixed-charge network design problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:transe:v:192:y:2024:i:c:s136655452400396x
    DOI: 10.1016/j.tre.2024.103805
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136655452400396X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2024.103805?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Charly Robinson La Rocca & Jean-François Cordeau & Emma Frejinger, 2024. "One-Shot Learning for MIPs with SOS1 Constraints," SN Operations Research Forum, Springer, vol. 5(3), pages 1-28, September.
    2. Paraskevopoulos, Dimitris C. & Gürel, Sinan & Bektaş, Tolga, 2016. "The congested multicommodity network design problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 85(C), pages 166-187.
    3. Teodor Gabriel Crainic & Bernard Gendron, 2021. "Exact Methods for Fixed-Charge Network Design," Springer Books, in: Teodor Gabriel Crainic & Michel Gendreau & Bernard Gendron (ed.), Network Design with Applications to Transportation and Logistics, chapter 0, pages 29-89, Springer.
    4. Karimi-Mamaghan, Maryam & Mohammadi, Mehrdad & Pirayesh, Amir & Karimi-Mamaghan, Amir Mohammad & Irani, Hassan, 2020. "Hub-and-spoke network design under congestion: A learning based metaheuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    5. T. L. Magnanti & R. T. Wong, 1984. "Network Design and Transportation Planning: Models and Algorithms," Transportation Science, INFORMS, vol. 18(1), pages 1-55, February.
    6. Gendron, Bernard & Hanafi, Saïd & Todosijević, Raca, 2018. "Matheuristics based on iterative linear programming and slope scaling for multicommodity capacitated fixed charge network design," European Journal of Operational Research, Elsevier, vol. 268(1), pages 70-81.
    7. Kidd, Martin P. & Darvish, Maryam & Coelho, Leandro C. & Gendron, Bernard, 2024. "A relax-and-restrict matheuristic for supply chain network design with facility location and customer due date flexibility," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 182(C).
    8. Andrea Lodi & Giulia Zarpellon, 2017. "Rejoinder on: On learning and branching: a survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 247-248, July.
    9. M Yaghini & M Rahbar & M Karimi, 2013. "A hybrid simulated annealing and column generation approach for capacitated multicommodity network design," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(7), pages 1010-1020, July.
    10. Bengio, Yoshua & Lodi, Andrea & Prouvost, Antoine, 2021. "Machine learning for combinatorial optimization: A methodological tour d’horizon," European Journal of Operational Research, Elsevier, vol. 290(2), pages 405-421.
    11. Mervat Chouman & Teodor Gabriel Crainic & Bernard Gendron, 2017. "Commodity Representations and Cut-Set-Based Inequalities for Multicommodity Capacitated Fixed-Charge Network Design," Transportation Science, INFORMS, vol. 51(2), pages 650-667, May.
    12. Yuan Sun & Andreas Ernst & Xiaodong Li & Jake Weiner, 2021. "Generalization of machine learning for problem reduction: a case study on travelling salesman problems," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(3), pages 607-633, September.
    13. Andrea Lodi & Giulia Zarpellon, 2017. "On learning and branching: a survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 207-236, July.
    14. Real, Luiza Bernardes & Contreras, Ivan & Cordeau, Jean-François & de Camargo, Ricardo Saraiva & de Miranda, Gilberto, 2021. "Multimodal hub network design with flexible routes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    15. An, Kun & Lo, Hong K., 2016. "Two-phase stochastic program for transit network design under demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 157-181.
    16. Ilfat Ghamlouche & Teodor Crainic & Michel Gendreau, 2004. "Path Relinking, Cycle-Based Neighbourhoods and Capacitated Multicommodity Network Design," Annals of Operations Research, Springer, vol. 131(1), pages 109-133, October.
    17. Naoto Katayama, 2020. "MIP Neighborhood Search Heuristics for a Capacitated Fixed-Charge Network Design Problem," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 37(03), pages 1-29, April.
    18. Basallo-Triana, Mario José & Bravo-Bastidas, Juan José & Contreras, Ivan & Cordeau, Jean-François & Vidal-Holguín, Carlos Julio, 2023. "Intermodal hub network design with generalized capacity constraints and non-synchronized train–truck operations," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    19. Ghanei, Shima & Contreras, Ivan & Cordeau, Jean-François, 2023. "A two-stage stochastic collaborative intertwined supply network design problem under multiple disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    20. Mike Hewitt & George L. Nemhauser & Martin W. P. Savelsbergh, 2010. "Combining Exact and Heuristic Approaches for the Capacitated Fixed-Charge Network Flow Problem," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 314-325, May.
    21. Hewitt, Mike & Lehuédé, Fabien, 2023. "New formulations for the Scheduled Service Network Design Problem," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 117-133.
    22. Ilfat Ghamlouche & Teodor Gabriel Crainic & Michel Gendreau, 2003. "Cycle-Based Neighbourhoods for Fixed-Charge Capacitated Multicommodity Network Design," Operations Research, INFORMS, vol. 51(4), pages 655-667, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agarwal, Y.K. & Aneja, Y.P. & Jayaswal, Sachin, 2022. "Directed fixed charge multicommodity network design: A cutting plane approach using polar duality," European Journal of Operational Research, Elsevier, vol. 299(1), pages 118-136.
    2. Gendron, Bernard & Hanafi, Saïd & Todosijević, Raca, 2018. "Matheuristics based on iterative linear programming and slope scaling for multicommodity capacitated fixed charge network design," European Journal of Operational Research, Elsevier, vol. 268(1), pages 70-81.
    3. Li, Xiangyong & Wei, Kai & Aneja, Y.P. & Tian, Peng, 2017. "Design-balanced capacitated multicommodity network design with heterogeneous assets," Omega, Elsevier, vol. 67(C), pages 145-159.
    4. Fatemeh Sarayloo & Teodor Gabriel Crainic & Walter Rei, 2023. "An integrated learning and progressive hedging matheuristic for stochastic network design problem," Journal of Heuristics, Springer, vol. 29(4), pages 409-434, December.
    5. Ahmad Baubaid & Natashia Boland & Martin Savelsbergh, 2021. "The Value of Limited Flexibility in Service Network Designs," Transportation Science, INFORMS, vol. 55(1), pages 52-74, 1-2.
    6. Masoud Yaghini & Mohammad Karimi & Mohadeseh Rahbar & Mohammad Hassan Sharifitabar, 2015. "A Cutting-Plane Neighborhood Structure for Fixed-Charge Capacitated Multicommodity Network Design Problem," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 48-58, February.
    7. Endong Zhu & Teodor Gabriel Crainic & Michel Gendreau, 2014. "Scheduled Service Network Design for Freight Rail Transportation," Operations Research, INFORMS, vol. 62(2), pages 383-400, April.
    8. Houshan Zhang, 2025. "A Graph-Induced Neighborhood Search Heuristic for the Capacitated Multicommodity Network Design Problem," Mathematics, MDPI, vol. 13(4), pages 1-23, February.
    9. Mervat Chouman & Teodor Gabriel Crainic & Bernard Gendron, 2018. "The impact of filtering in a branch-and-cut algorithm for multicommodity capacitated fixed charge network design," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(2), pages 143-184, June.
    10. Mervat Chouman & Teodor Gabriel Crainic & Bernard Gendron, 2017. "Commodity Representations and Cut-Set-Based Inequalities for Multicommodity Capacitated Fixed-Charge Network Design," Transportation Science, INFORMS, vol. 51(2), pages 650-667, May.
    11. Shen, Yunzhuang & Sun, Yuan & Li, Xiaodong & Eberhard, Andrew & Ernst, Andreas, 2023. "Adaptive solution prediction for combinatorial optimization," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1392-1408.
    12. Mike Hewitt & George Nemhauser & Martin W. P. Savelsbergh, 2013. "Branch-and-Price Guided Search for Integer Programs with an Application to the Multicommodity Fixed-Charge Network Flow Problem," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 302-316, May.
    13. Bootaki, Behrang & Zhang, Guoqing, 2024. "A location-production-routing problem for distributed manufacturing platforms: A neural genetic algorithm solution methodology," International Journal of Production Economics, Elsevier, vol. 275(C).
    14. Juho Lauri & Sourav Dutta & Marco Grassia & Deepak Ajwani, 2023. "Learning fine-grained search space pruning and heuristics for combinatorial optimization," Journal of Heuristics, Springer, vol. 29(2), pages 313-347, June.
    15. Ahmet Herekoğlu & Özgür Kabak, 2024. "Crew recovery optimization with deep learning and column generation for sustainable airline operation management," Annals of Operations Research, Springer, vol. 342(1), pages 399-427, November.
    16. Fragkos, Ioannis & Cordeau, Jean-François & Jans, Raf, 2021. "Decomposition methods for large-scale network expansion problems," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 60-80.
    17. Tobias Harks & Felix G. König & Jannik Matuschke & Alexander T. Richter & Jens Schulz, 2016. "An Integrated Approach to Tactical Transportation Planning in Logistics Networks," Transportation Science, INFORMS, vol. 50(2), pages 439-460, May.
    18. Wang, Zujian & Qi, Mingyao & Cheng, Chun & Zhang, Canrong, 2019. "A hybrid algorithm for large-scale service network design considering a heterogeneous fleet," European Journal of Operational Research, Elsevier, vol. 276(2), pages 483-494.
    19. Stefan Gollowitzer & Bernard Gendron & Ivana Ljubić, 2013. "A cutting plane algorithm for the Capacitated Connected Facility Location Problem," Computational Optimization and Applications, Springer, vol. 55(3), pages 647-674, July.
    20. Charly Robinson La Rocca & Jean-François Cordeau & Emma Frejinger, 2024. "One-Shot Learning for MIPs with SOS1 Constraints," SN Operations Research Forum, Springer, vol. 5(3), pages 1-28, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:192:y:2024:i:c:s136655452400396x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.