IDEAS home Printed from https://ideas.repec.org/a/spr/flsman/v32y2020i2d10.1007_s10696-019-09332-z.html
   My bibliography  Save this article

A decomposition method for assembly/disassembly systems with blocking and general distributions

Author

Listed:
  • Jean-Sébastien Tancrez

    (Université catholique de Louvain, CORE, Louvain School of Management)

Abstract

A modelling methodology is presented for assembly/disassembly systems with general processing time distributions and finite buffers. The approach combines the distributions discretization and a decomposition technique to analyze large manufacturing systems in a reasonable computational time and with good accuracy. In the decomposition technique, the system is decomposed into two station subsystems and the processing time distributions of the virtual stations are iteratively modified to approximate the impact of the rest of the network, adding estimations of the blocking and starving distributions. To analyze each subsystem, the general processing time distributions are discretized by aggregation of the probability masses, and the subsystem is then analytically modeled using a discrete Markov chain. We first show that this approach allows an accurate estimation of the subsystems cycle time distributions, which is crucial in the decomposition technique. Using computational experiments, we show that our decomposition method leads to accurate performance evaluation for large manufacturing systems (relative error on the order of 1%) and that the fine distribution estimation indeed seems to bring an improvement. Furthermore, we show on examples that, using decomposition, the cycle time distributions can be approximated reliably for large systems.

Suggested Citation

  • Jean-Sébastien Tancrez, 2020. "A decomposition method for assembly/disassembly systems with blocking and general distributions," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 272-296, June.
  • Handle: RePEc:spr:flsman:v:32:y:2020:i:2:d:10.1007_s10696-019-09332-z
    DOI: 10.1007/s10696-019-09332-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10696-019-09332-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10696-019-09332-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gourgand, Michel & Grangeon, Nathalie & Norre, Sylvie, 2005. "Markovian analysis for performance evaluation and scheduling in m machine stochastic flow-shop with buffers of any capacity," European Journal of Operational Research, Elsevier, vol. 161(1), pages 126-147, February.
    2. Marcello Colledani & Stanley Gershwin, 2013. "A decomposition method for approximate evaluation of continuous flow multi-stage lines with general Markovian machines," Annals of Operations Research, Springer, vol. 209(1), pages 5-40, October.
    3. Kerbachea, Laoucine & MacGregor Smith, J., 1987. "The generalized expansion method for open finite queueing networks," European Journal of Operational Research, Elsevier, vol. 32(3), pages 448-461, December.
    4. Alexandre Brandwajn & Yung-Li Lily Jow, 1988. "An Approximation Method for Tandem Queues with Blocking," Operations Research, INFORMS, vol. 36(1), pages 73-83, February.
    5. Tijs Huisman & Richard J. Boucherie, 2011. "Decomposition and Aggregation in Queueing Networks," International Series in Operations Research & Management Science, in: Richard J. Boucherie & Nico M. Dijk (ed.), Queueing Networks, chapter 0, pages 313-344, Springer.
    6. Svenja Lagershausen & Bariş Tan, 2015. "On the Exact Inter-departure, Inter-start, and Cycle Time Distribution of Closed Queueing Networks Subject to Blocking," IISE Transactions, Taylor & Francis Journals, vol. 47(7), pages 673-692, July.
    7. Shi, Chuan & Gershwin, Stanley B., 2016. "Part sojourn time distribution in a two-machine line," European Journal of Operational Research, Elsevier, vol. 248(1), pages 146-158.
    8. Liu, Jialu & Yang, Sheng & Wu, Aiguo & Hu, S. Jack, 2012. "Multi-state throughput analysis of a two-stage manufacturing system with parallel unreliable machines and a finite buffer," European Journal of Operational Research, Elsevier, vol. 219(2), pages 296-304.
    9. Papadopoulos, H. T. & Heavey, C., 1996. "Queueing theory in manufacturing systems analysis and design: A classification of models for production and transfer lines," European Journal of Operational Research, Elsevier, vol. 92(1), pages 1-27, July.
    10. Yves Dallery & Yannick Frein, 1993. "On Decomposition Methods for Tandem Queueing Networks with Blocking," Operations Research, INFORMS, vol. 41(2), pages 386-399, April.
    11. Laoucine Kerbache & J.Macgregor Smith, 1987. "The generalized expansion method for open finite queueing networks," Post-Print hal-00484457, HAL.
    12. Jean-Sébastien Tancrez & Philippe Chevalier & Pierre Semal, 2011. "Probability masses fitting in the analysis of manufacturing flow lines," Annals of Operations Research, Springer, vol. 182(1), pages 163-191, January.
    13. Stanley B. Gershwin, 1987. "An Efficient Decomposition Method for the Approximate Evaluation of Tandem Queues with Finite Storage Space and Blocking," Operations Research, INFORMS, vol. 35(2), pages 291-305, April.
    14. Michael Manitz, 2015. "Analysis of assembly/disassembly queueing networks with blocking after service and general service times," Annals of Operations Research, Springer, vol. 226(1), pages 417-441, March.
    15. Laoucine Kerbache & J. Macgregor Smith, 1988. "Asymptotic behavior of the expansion method for open finite queueing networks," Post-Print hal-00484446, HAL.
    16. Sunkyo Kim, 2011. "Modeling Cross Correlation in Three-Moment Four-Parameter Decomposition Approximation of Queueing Networks," Operations Research, INFORMS, vol. 59(2), pages 480-497, April.
    17. Tan, BarIs & Gershwin, Stanley B., 2009. "Analysis of a general Markovian two-stage continuous-flow production system with a finite buffer," International Journal of Production Economics, Elsevier, vol. 120(2), pages 327-339, August.
    18. Helber, Stefan, 1998. "Decomposition of unreliable assembly/disassembly networks with limited buffer capacity and random processing times," European Journal of Operational Research, Elsevier, vol. 109(1), pages 24-42, August.
    19. Tayfur Altiok, 1989. "Approximate Analysis of Queues in Series with Phase-Type Service Times and Blocking," Operations Research, INFORMS, vol. 37(4), pages 601-610, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Papadopoulos, H. T. & Heavey, C., 1996. "Queueing theory in manufacturing systems analysis and design: A classification of models for production and transfer lines," European Journal of Operational Research, Elsevier, vol. 92(1), pages 1-27, July.
    2. Osorio, Carolina & Bierlaire, Michel, 2009. "An analytic finite capacity queueing network model capturing the propagation of congestion and blocking," European Journal of Operational Research, Elsevier, vol. 196(3), pages 996-1007, August.
    3. Korporaal, R. & Ridder, A.A.N. & Kloprogge, P. & Dekker, R., 1999. "Capacity planning of prisons in the Netherlands," Econometric Institute Research Papers EI 9909-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    4. Osorio, Carolina & Wang, Carter, 2017. "On the analytical approximation of joint aggregate queue-length distributions for traffic networks: A stationary finite capacity Markovian network approach," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 305-339.
    5. Cruz, F.R.B. & Van Woensel, T. & Smith, J. MacGregor, 2010. "Buffer and throughput trade-offs in M/G/1/K queueing networks: A bi-criteria approach," International Journal of Production Economics, Elsevier, vol. 125(2), pages 224-234, June.
    6. Jean-Sébastien Tancrez & Philippe Chevalier & Pierre Semal, 2011. "Probability masses fitting in the analysis of manufacturing flow lines," Annals of Operations Research, Springer, vol. 182(1), pages 163-191, January.
    7. Noa Zychlinski & Avishai Mandelbaum & Petar Momčilović & Izack Cohen, 2020. "Bed Blocking in Hospitals Due to Scarce Capacity in Geriatric Institutions—Cost Minimization via Fluid Models," Manufacturing & Service Operations Management, INFORMS, vol. 22(2), pages 396-411, March.
    8. Osorio, Carolina & Bierlaire, Michel, 2012. "A tractable analytical model for large-scale congested protein synthesis networks," European Journal of Operational Research, Elsevier, vol. 219(3), pages 588-597.
    9. Konstantinos S. Boulas & Georgios D. Dounias & Chrissoleon T. Papadopoulos, 2023. "A hybrid evolutionary algorithm approach for estimating the throughput of short reliable approximately balanced production lines," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 823-852, February.
    10. Asaduzzaman, Md & Chaussalet, Thierry J., 2014. "Capacity planning of a perinatal network with generalised loss network model with overflow," European Journal of Operational Research, Elsevier, vol. 232(1), pages 178-185.
    11. Saied Samiedaluie & Vedat Verter, 2019. "The impact of specialization of hospitals on patient access to care; a queuing analysis with an application to a neurological hospital," Health Care Management Science, Springer, vol. 22(4), pages 709-726, December.
    12. Smith, J. MacGregor & Cruz, F.R.B. & van Woensel, T., 2010. "Topological network design of general, finite, multi-server queueing networks," European Journal of Operational Research, Elsevier, vol. 201(2), pages 427-441, March.
    13. Tancrez, Jean-Sbastien & Semal, Pierre & Chevalier, Philippe, 2009. "Histogram based bounds and approximations for production lines," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1133-1141, September.
    14. H. S. R. Martins & F. R. B. Cruz & A. R. Duarte & F. L. P. Oliveira, 2019. "Modeling and optimization of buffers and servers in finite queueing networks," OPSEARCH, Springer;Operational Research Society of India, vol. 56(1), pages 123-150, March.
    15. Remco Bierbooms & Ivo Adan & Marcel Vuuren, 2013. "Approximate analysis of single-server tandem queues with finite buffers," Annals of Operations Research, Springer, vol. 209(1), pages 67-84, October.
    16. Michael Manitz, 2015. "Analysis of assembly/disassembly queueing networks with blocking after service and general service times," Annals of Operations Research, Springer, vol. 226(1), pages 417-441, March.
    17. Kiesmüller, G.P. & Sachs, F.E., 2020. "Spare parts or buffer? How to design a transfer line with unreliable machines," European Journal of Operational Research, Elsevier, vol. 284(1), pages 121-134.
    18. Sachs, F.E. & Helber, S. & Kiesmüller, G.P., 2022. "Evaluation of Unreliable Flow Lines with Limited Buffer Capacities and Spare Part Provisioning," European Journal of Operational Research, Elsevier, vol. 302(2), pages 544-559.
    19. Elisa Gebennini & Andrea Grassi & Cesare Fantuzzi, 2015. "The two-machine one-buffer continuous time model with restart policy," Annals of Operations Research, Springer, vol. 231(1), pages 33-64, August.
    20. Shi, Chuan & Gershwin, Stanley B., 2016. "Part sojourn time distribution in a two-machine line," European Journal of Operational Research, Elsevier, vol. 248(1), pages 146-158.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:flsman:v:32:y:2020:i:2:d:10.1007_s10696-019-09332-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.