IDEAS home Printed from
   My bibliography  Save this paper

Probability masses fitting in the analysis of manufacturing flow lines


  • TANCREZ, Jean-Sébastien
  • CHEVALIER, Philippe
  • SEMAL, Pierre


A new alternative in the analysis of manufacturing systems with finite buffers is presented. We propose and study a new approach in order to build tractable phase-type distributions, which are required by state-of-the-art analytical models. Called "probability masses fitting" (PMF), the approach is quite simple: the probability masses on regular intervals are computed and aggregated on a single value in the corresponding interval, leading to a discrete distribution. PMF shows some interesting properties: it is bounding, monotonic and it conserves the shape of the distribution. After PMF, from the discrete phase-type distributions, state-of-the-art analytical models can be applied. Here, we choose the exactly model the evolution of the system by a Markov chain, and we focus on flow lines. The properties of the global modelling method can be discovered by extending the PMF properties, mainly leading to bounds on the throughput. Finally, the method is shown, by numerical experiments, to compute accurate estimations of the throughput and of various performance measures, reaching accuracy levels of a few tenths of percent.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • TANCREZ, Jean-Sébastien & CHEVALIER, Philippe & SEMAL, Pierre, 2011. "Probability masses fitting in the analysis of manufacturing flow lines," CORE Discussion Papers RP 2433, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvrp:2433
    Note: In : Annals of Operations Research, 182(1), 163-191, 2011

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvrp:2433. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alain GILLIS). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.