IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v233y2015i1p237-26110.1007-s10479-013-1503-4.html
   My bibliography  Save this article

Performance analysis of wireless sensor networks using queuing networks

Author

Listed:
  • R. Lenin
  • S. Ramaswamy

Abstract

Wireless Sensor Networks (WSNs) are autonomous wireless systems consists of a variety of collaborative sensor nodes forming a self-configuring network with or without any pre-defined infrastructure. The common challenges of a WSN are network connectivity, node mobility, energy consumption, data computation and aggregation at sensor nodes. In this paper we focus on intermittency in network connectivity due to mobility of sensor nodes. We propose a new mathematical model to capture a given entire WSN as is with intermittency introduced between the communication links due to mobility. The model involves open GI/G/1/N queuing networks whereby intermittency durations in communication links are captured in terms of mobility models. The analytical formulas for the performance measures such as average end-to-end delay, packet loss probability, throughput, and average number of hops are derived using the queuing network analyzer and expansion method for models with infinite- and finite-buffer nodes, respectively. For models with 2-state intermittency, we analyze the performance measures by classifying these models into three types: namely, model with intermittent reception, model with intermittent transmission and/or reception, and model with intermittent transmission. We extend the analysis to multi-state intermittency models. We demonstrate the gained insight of WSNs through extensive numerical results. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • R. Lenin & S. Ramaswamy, 2015. "Performance analysis of wireless sensor networks using queuing networks," Annals of Operations Research, Springer, vol. 233(1), pages 237-261, October.
  • Handle: RePEc:spr:annopr:v:233:y:2015:i:1:p:237-261:10.1007/s10479-013-1503-4
    DOI: 10.1007/s10479-013-1503-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-013-1503-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-013-1503-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Laoucine Kerbache & J.Macgregor Smith, 1987. "The generalized expansion method for open finite queueing networks," Post-Print hal-00484457, HAL.
    2. Kerbachea, Laoucine & MacGregor Smith, J., 1987. "The generalized expansion method for open finite queueing networks," European Journal of Operational Research, Elsevier, vol. 32(3), pages 448-461, December.
    3. Ching-Chung Kuo, 2011. "Optimal assignment of resources to strengthen the weakest link in an uncertain environment," Annals of Operations Research, Springer, vol. 186(1), pages 159-173, June.
    4. D. Perry & W. Stadje & S. Zacks, 2002. "Boundary Crossing for the Difference of Two Ordinary or Compound Poisson Processes," Annals of Operations Research, Springer, vol. 113(1), pages 119-132, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Kan & McGinnis, Leon, 2012. "Performance evaluation for general queueing networks in manufacturing systems: Characterizing the trade-off between queue time and utilization," European Journal of Operational Research, Elsevier, vol. 221(2), pages 328-339.
    2. Papadopoulos, H. T. & Heavey, C., 1996. "Queueing theory in manufacturing systems analysis and design: A classification of models for production and transfer lines," European Journal of Operational Research, Elsevier, vol. 92(1), pages 1-27, July.
    3. Hui-Yu Zhang & Qing-Xin Chen & James MacGregor Smith & Ning Mao & Ai-Lin Yu & Zhan-Tao Li, 2017. "Performance analysis of open general queuing networks with blocking and feedback," International Journal of Production Research, Taylor & Francis Journals, vol. 55(19), pages 5760-5781, October.
    4. Osorio, Carolina & Wang, Carter, 2017. "On the analytical approximation of joint aggregate queue-length distributions for traffic networks: A stationary finite capacity Markovian network approach," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 305-339.
    5. Osorio, Carolina & Bierlaire, Michel, 2009. "An analytic finite capacity queueing network model capturing the propagation of congestion and blocking," European Journal of Operational Research, Elsevier, vol. 196(3), pages 996-1007, August.
    6. Remco Bierbooms & Ivo Adan & Marcel Vuuren, 2013. "Approximate analysis of single-server tandem queues with finite buffers," Annals of Operations Research, Springer, vol. 209(1), pages 67-84, October.
    7. Cruz, F.R.B. & Van Woensel, T. & Smith, J. MacGregor, 2010. "Buffer and throughput trade-offs in M/G/1/K queueing networks: A bi-criteria approach," International Journal of Production Economics, Elsevier, vol. 125(2), pages 224-234, June.
    8. Stepanov, Alexander & Smith, James MacGregor, 2009. "Multi-objective evacuation routing in transportation networks," European Journal of Operational Research, Elsevier, vol. 198(2), pages 435-446, October.
    9. Jean-Sébastien Tancrez & Philippe Chevalier & Pierre Semal, 2011. "Probability masses fitting in the analysis of manufacturing flow lines," Annals of Operations Research, Springer, vol. 182(1), pages 163-191, January.
    10. F. R. B. Cruz & A. R. Duarte & G. L. Souza, 2018. "Multi-objective performance improvements of general finite single-server queueing networks," Journal of Heuristics, Springer, vol. 24(5), pages 757-781, October.
    11. Asaduzzaman, Md & Chaussalet, Thierry J., 2014. "Capacity planning of a perinatal network with generalised loss network model with overflow," European Journal of Operational Research, Elsevier, vol. 232(1), pages 178-185.
    12. Smith, J. MacGregor & Cruz, F.R.B. & van Woensel, T., 2010. "Topological network design of general, finite, multi-server queueing networks," European Journal of Operational Research, Elsevier, vol. 201(2), pages 427-441, March.
    13. Hu, Lu & Zhao, Bin & Zhu, Juanxiu & Jiang, Yangsheng, 2019. "Two time-varying and state-dependent fluid queuing models for traffic circulation systems," European Journal of Operational Research, Elsevier, vol. 275(3), pages 997-1019.
    14. H. S. R. Martins & F. R. B. Cruz & A. R. Duarte & F. L. P. Oliveira, 2019. "Modeling and optimization of buffers and servers in finite queueing networks," OPSEARCH, Springer;Operational Research Society of India, vol. 56(1), pages 123-150, March.
    15. Noa Zychlinski & Avishai Mandelbaum & Petar Momčilović & Izack Cohen, 2020. "Bed Blocking in Hospitals Due to Scarce Capacity in Geriatric Institutions—Cost Minimization via Fluid Models," Manufacturing & Service Operations Management, INFORMS, vol. 22(2), pages 396-411, March.
    16. Jean-Sébastien Tancrez, 2020. "A decomposition method for assembly/disassembly systems with blocking and general distributions," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 272-296, June.
    17. Korporaal, R. & Ridder, A.A.N. & Kloprogge, P. & Dekker, R., 1999. "Capacity planning of prisons in the Netherlands," Econometric Institute Research Papers EI 9909-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    18. Xinyang Deng & Yong Deng & Felix Chan, 2014. "An improved operator of combination with adapted conflict," Annals of Operations Research, Springer, vol. 223(1), pages 451-459, December.
    19. Mitchell, David H. & MacGregor Smith, J., 2001. "Topological network design of pedestrian networks," Transportation Research Part B: Methodological, Elsevier, vol. 35(2), pages 107-135, February.
    20. Pierre-Olivier Goffard, 2019. "Fraud risk assessment within blockchain transactions," Working Papers hal-01716687, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:233:y:2015:i:1:p:237-261:10.1007/s10479-013-1503-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.