IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v35y2001i2p107-135.html
   My bibliography  Save this article

Topological network design of pedestrian networks

Author

Listed:
  • Mitchell, David H.
  • MacGregor Smith, J.

Abstract

The design and analysis of series, merge, and splitting topologies of pedestrian networks is presented and an analytical approximation methodology is developed to compute the network performance measures. State dependent queuing networks are appropriate tools for modelling congestion in vehicular and pedestrian traffic networks, and many others where congestion occurs due to a decay in the service rate with increased density of customer traffic. This paper focuses on models for pedestrian network design. Also, an optimization methodology is developed for determining the optimal capacity requirements of these networks and extensive experimental results are included.

Suggested Citation

  • Mitchell, David H. & MacGregor Smith, J., 2001. "Topological network design of pedestrian networks," Transportation Research Part B: Methodological, Elsevier, vol. 35(2), pages 107-135, February.
  • Handle: RePEc:eee:transb:v:35:y:2001:i:2:p:107-135
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(99)00039-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kerbachea, Laoucine & MacGregor Smith, J., 1987. "The generalized expansion method for open finite queueing networks," European Journal of Operational Research, Elsevier, vol. 32(3), pages 448-461, December.
    2. J. MacGregor Smith & Sophia Daskalaki, 1988. "Buffer Space Allocation in Automated Assembly Lines," Operations Research, INFORMS, vol. 36(2), pages 343-358, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tzay-An Shiau & Chia-Chin Chuang, 2015. "Social construction of port sustainability indicators: a case study of Keelung Port," Maritime Policy & Management, Taylor & Francis Journals, vol. 42(1), pages 26-42, January.
    2. Veenstra, A.W. & Mulder, H.M. & Sels, R.A., 2003. "Network analysis in the Caribbean," Econometric Institute Research Papers EI 2003-40, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. Jasmine Siu Lee Lam & Jing Dai, 2012. "A decision support system for port selection," Transportation Planning and Technology, Taylor & Francis Journals, vol. 35(4), pages 509-524, January.
    4. Zhu, Juanxiu & Hu, Lu & Jiang, Yangsheng & Khattak, Afaq, 2017. "Circulation network design for urban rail transit station using a PH(n)/PH(n)/C/C queuing network model," European Journal of Operational Research, Elsevier, vol. 260(3), pages 1043-1068.
    5. Wu, Aoping & Hu, Lu & Li, Dongjie & Zhu, Juanxiu & Shang, Pan, 2024. "A Queue-SEIAR model: Revealing the transmission mechanism of epidemics in a metro line from a meso level," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 190(C).
    6. Khalidur Rahman & Noraida Abdul Ghani & Anton Abdulbasah Kamil & Adli Mustafa, 2013. "Weighted Regression Method for the Study of Pedestrian Flow Characteristics in Dhaka, Bangladesh," Modern Applied Science, Canadian Center of Science and Education, vol. 7(4), pages 1-17, April.
    7. Ryan Palmer & Martin Utley, 2020. "On the modelling and performance measurement of service networks with heterogeneous customers," Annals of Operations Research, Springer, vol. 293(1), pages 237-268, October.
    8. Hu, Lu & Zhao, Bin & Zhu, Juanxiu & Jiang, Yangsheng, 2019. "Two time-varying and state-dependent fluid queuing models for traffic circulation systems," European Journal of Operational Research, Elsevier, vol. 275(3), pages 997-1019.
    9. Drezner, Zvi & Wesolowsky, George O., 2003. "Network design: selection and design of links and facility location," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(3), pages 241-256, March.
    10. Yue, Hao & Guan, Hongzhi & Zhang, Juan & Shao, Chunfu, 2010. "Study on bi-direction pedestrian flow using cellular automata simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 527-539.
    11. Carlos Pestana Barros & J. Augusto Felício & Renato Leite Fernandes, 2012. "Productivity analysis of Brazilian seaports," Maritime Policy & Management, Taylor & Francis Journals, vol. 39(5), pages 503-523, September.
    12. MacGregor Smith, J. & Cruz, F.R.B., 2014. "M/G/c/c state dependent travel time models and properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 560-579.
    13. Cruz, F.R.B. & van Woensel, T. & MacGregor Smith, J. & Lieckens, K., 2010. "On the system optimum of traffic assignment in M/G/c/c state-dependent queueing networks," European Journal of Operational Research, Elsevier, vol. 201(1), pages 183-193, February.
    14. Hu, Lu & Jiang, Yangsheng & Zhu, Juanxiu & Chen, Yanru, 2015. "A PH/PH(n)/C/C state-dependent queuing model for metro station corridor width design," European Journal of Operational Research, Elsevier, vol. 240(1), pages 109-126.
    15. Mehrdad Moshtagh & Jafar Fathali & James MacGregor Smith & Nezam Mahdavi-Amiri, 2019. "Finding an optimal core on a tree network with M/G/c/c state-dependent queues," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(1), pages 115-142, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Smith, J. MacGregor & Cruz, F.R.B. & van Woensel, T., 2010. "Topological network design of general, finite, multi-server queueing networks," European Journal of Operational Research, Elsevier, vol. 201(2), pages 427-441, March.
    2. H. S. R. Martins & F. R. B. Cruz & A. R. Duarte & F. L. P. Oliveira, 2019. "Modeling and optimization of buffers and servers in finite queueing networks," OPSEARCH, Springer;Operational Research Society of India, vol. 56(1), pages 123-150, March.
    3. Korporaal, R. & Ridder, A.A.N. & Kloprogge, P. & Dekker, R., 1999. "Capacity planning of prisons in the Netherlands," Econometric Institute Research Papers EI 9909-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    4. Wu, Kan & McGinnis, Leon, 2012. "Performance evaluation for general queueing networks in manufacturing systems: Characterizing the trade-off between queue time and utilization," European Journal of Operational Research, Elsevier, vol. 221(2), pages 328-339.
    5. Papadopoulos, H. T. & Heavey, C., 1996. "Queueing theory in manufacturing systems analysis and design: A classification of models for production and transfer lines," European Journal of Operational Research, Elsevier, vol. 92(1), pages 1-27, July.
    6. George Liberopoulos, 2020. "Comparison of optimal buffer allocation in flow lines under installation buffer, echelon buffer, and CONWIP policies," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 297-365, June.
    7. Hui-Yu Zhang & Qing-Xin Chen & James MacGregor Smith & Ning Mao & Ai-Lin Yu & Zhan-Tao Li, 2017. "Performance analysis of open general queuing networks with blocking and feedback," International Journal of Production Research, Taylor & Francis Journals, vol. 55(19), pages 5760-5781, October.
    8. Andijani, A. A. & Anwarul, M., 1997. "Manufacturing blocking discipline: A multi-criterion approach for buffer allocations," International Journal of Production Economics, Elsevier, vol. 51(3), pages 155-163, September.
    9. Osorio, Carolina & Wang, Carter, 2017. "On the analytical approximation of joint aggregate queue-length distributions for traffic networks: A stationary finite capacity Markovian network approach," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 305-339.
    10. Gilberto Pérez-Lechuga & Francisco Venegas-Martínez & Marco A. Montufar-Benítez & Jaime Mora-Vargas, 2022. "On the Dynamics in Decoupling Buffers in Mass Manufacturing Lines: A Stochastic Approach," Mathematics, MDPI, vol. 10(10), pages 1-21, May.
    11. Nahas, Nabil & Nourelfath, Mustapha & Gendreau, Michel, 2014. "Selecting machines and buffers in unreliable assembly/disassembly manufacturing networks," International Journal of Production Economics, Elsevier, vol. 154(C), pages 113-126.
    12. Osorio, Carolina & Bierlaire, Michel, 2009. "An analytic finite capacity queueing network model capturing the propagation of congestion and blocking," European Journal of Operational Research, Elsevier, vol. 196(3), pages 996-1007, August.
    13. Remco Bierbooms & Ivo Adan & Marcel Vuuren, 2013. "Approximate analysis of single-server tandem queues with finite buffers," Annals of Operations Research, Springer, vol. 209(1), pages 67-84, October.
    14. Cruz, F.R.B. & Van Woensel, T. & Smith, J. MacGregor, 2010. "Buffer and throughput trade-offs in M/G/1/K queueing networks: A bi-criteria approach," International Journal of Production Economics, Elsevier, vol. 125(2), pages 224-234, June.
    15. Stepanov, Alexander & Smith, James MacGregor, 2009. "Multi-objective evacuation routing in transportation networks," European Journal of Operational Research, Elsevier, vol. 198(2), pages 435-446, October.
    16. Jean-Sébastien Tancrez & Philippe Chevalier & Pierre Semal, 2011. "Probability masses fitting in the analysis of manufacturing flow lines," Annals of Operations Research, Springer, vol. 182(1), pages 163-191, January.
    17. Kerbache, Laoucine & Smith, J. MacGregor, 2000. "Multi-objective routing within large scale facilities using open finite queueing networks," European Journal of Operational Research, Elsevier, vol. 121(1), pages 105-123, February.
    18. Subba Rao, S. & Gunasekaran, A. & Goyal, S. K. & Martikainen, T., 1998. "Waiting line model applications in manufacturing," International Journal of Production Economics, Elsevier, vol. 54(1), pages 1-28, January.
    19. F. R. B. Cruz & A. R. Duarte & G. L. Souza, 2018. "Multi-objective performance improvements of general finite single-server queueing networks," Journal of Heuristics, Springer, vol. 24(5), pages 757-781, October.
    20. Asaduzzaman, Md & Chaussalet, Thierry J., 2014. "Capacity planning of a perinatal network with generalised loss network model with overflow," European Journal of Operational Research, Elsevier, vol. 232(1), pages 178-185.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:35:y:2001:i:2:p:107-135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.