IDEAS home Printed from https://ideas.repec.org/a/wut/journl/v1y2003p5.html
   My bibliography  Save this article

The assessment of efficiency of a cybernetical and economical system of “transport–resources”

Author

Listed:
  • Tomasz Pisula

Abstract

In the paper the assessment of efficiency of cybernetical and economical systems of “transport – resources” type with the failure transportation system has been presented. The system consists of single sender of resources and single receiver as well as the store of resources as a buffer enabling the receiver to work continuously even in the standby situation of the lack of resources from the receiver. The so-called function of loss is the measure of efficiency of the systems (in economical aspect). The function deals with a total loss of the system connected with costs of taking over resources from the sender, costs of storing the resources and costs of standby resources from external contractors (in case of deficit). In the function of loss the additional profits of the system have been taken into account which result from the sales of excess of the resources in the store (in the situation of excess) to the external contractors. Based on of the detailed analysis of the function of loss for different variants of system operating it was possible to draw very useful and practical conclusions which enable such a functioning of the system (through the proper choice of its parameters that) it could operate most effectively (suffer a relatively low loss).

Suggested Citation

  • Tomasz Pisula, 2003. "The assessment of efficiency of a cybernetical and economical system of “transport–resources”," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 13(1), pages 59-77.
  • Handle: RePEc:wut:journl:v:1:y:2003:p:5
    as

    Download full text from publisher

    File URL: https://ord.pwr.edu.pl/assets/papers_archive/200315%20-%20published.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. Berg & M. J. M. Posner & H. Zhao, 1994. "Production-Inventory Systems with Unreliable Machines," Operations Research, INFORMS, vol. 42(1), pages 111-118, February.
    2. J. MacGregor Smith & Sophia Daskalaki, 1988. "Buffer Space Allocation in Automated Assembly Lines," Operations Research, INFORMS, vol. 36(2), pages 343-358, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Radovan Rusnák & Rudolf Zimka, 2003. "Fluctuations in an open economy model under fixed exchange rate regime," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 13(1), pages 79-89.
    2. B C Giri & T Dohi, 2005. "Exact formulation of stochastic EMQ model for an unreliable production system," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(5), pages 563-575, May.
    3. Chiu, Singa Wang, 2008. "Production lot size problem with failure in repair and backlogging derived without derivatives," European Journal of Operational Research, Elsevier, vol. 188(2), pages 610-615, July.
    4. Chakraborty, Tulika & Giri, B.C. & Chaudhuri, K.S., 2008. "Production lot sizing with process deterioration and machine breakdown," European Journal of Operational Research, Elsevier, vol. 185(2), pages 606-618, March.
    5. Chiu, Singa Wang & Chou, Chung-Li & Wu, Wen-Kuei, 2013. "Optimizing replenishment policy in an EPQ-based inventory model with nonconforming items and breakdown," Economic Modelling, Elsevier, vol. 35(C), pages 330-337.
    6. Om Prakash & A.R. Roy & A. Goswami, 2014. "Stochastic manufacturing system with process deterioration and machine breakdown," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(12), pages 2539-2551, December.
    7. Peymankar, Mahboobe & Dehghanian, Farzad & Ghiami, Yousef & Abolbashari, Mohammad Hassan, 2018. "The effects of contractual agreements on the economic production quantity model with machine breakdown," International Journal of Production Economics, Elsevier, vol. 201(C), pages 203-215.
    8. Ben A. Chaouch, 2007. "Inventory control and periodic price discounting campaigns," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(1), pages 94-108, February.
    9. George Liberopoulos, 2020. "Comparison of optimal buffer allocation in flow lines under installation buffer, echelon buffer, and CONWIP policies," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 297-365, June.
    10. Andijani, A. A. & Anwarul, M., 1997. "Manufacturing blocking discipline: A multi-criterion approach for buffer allocations," International Journal of Production Economics, Elsevier, vol. 51(3), pages 155-163, September.
    11. Mohebbi, Esmail, 2006. "A production-inventory model with randomly changing environmental conditions," European Journal of Operational Research, Elsevier, vol. 174(1), pages 539-552, October.
    12. Gilberto Pérez-Lechuga & Francisco Venegas-Martínez & Marco A. Montufar-Benítez & Jaime Mora-Vargas, 2022. "On the Dynamics in Decoupling Buffers in Mass Manufacturing Lines: A Stochastic Approach," Mathematics, MDPI, vol. 10(10), pages 1-21, May.
    13. Nahas, Nabil & Nourelfath, Mustapha & Gendreau, Michel, 2014. "Selecting machines and buffers in unreliable assembly/disassembly manufacturing networks," International Journal of Production Economics, Elsevier, vol. 154(C), pages 113-126.
    14. Harun Öztürk, 2021. "Optimal production run time for an imperfect production inventory system with rework, random breakdowns and inspection costs," Operational Research, Springer, vol. 21(1), pages 167-204, March.
    15. Kerbache, Laoucine & Smith, J. MacGregor, 2000. "Multi-objective routing within large scale facilities using open finite queueing networks," European Journal of Operational Research, Elsevier, vol. 121(1), pages 105-123, February.
    16. Mitchell, David H. & MacGregor Smith, J., 2001. "Topological network design of pedestrian networks," Transportation Research Part B: Methodological, Elsevier, vol. 35(2), pages 107-135, February.
    17. Giri, B. C. & Dohi, T., 2004. "Optimal lot sizing for an unreliable production system based on net present value approach," International Journal of Production Economics, Elsevier, vol. 92(2), pages 157-167, November.
    18. Azoury, Katy S. & Miyaoka, Julia, 2020. "Optimal and simple approximate solutions to a production-inventory system with stochastic and deterministic demand," European Journal of Operational Research, Elsevier, vol. 286(1), pages 178-189.
    19. Subba Rao, S. & Gunasekaran, A. & Goyal, S. K. & Martikainen, T., 1998. "Waiting line model applications in manufacturing," International Journal of Production Economics, Elsevier, vol. 54(1), pages 1-28, January.
    20. Chiu, Singa Wang & Wang, Shan-Ling & Chiu, Yuan-Shyi Peter, 2007. "Determining the optimal run time for EPQ model with scrap, rework, and stochastic breakdowns," European Journal of Operational Research, Elsevier, vol. 180(2), pages 664-676, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wut:journl:v:1:y:2003:p:5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adam Kasperski (email available below). General contact details of provider: https://edirc.repec.org/data/iopwrpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.