IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v166y2017icp61-72.html
   My bibliography  Save this article

Performance evaluation of a two-machine line with a finite buffer and condition-based maintenance

Author

Listed:
  • Fitouhi, Mohamed-Chahir
  • Nourelfath, Mustapha
  • Gershwin, Stanley B.

Abstract

This paper considers a two-machine continuous flow manufacturing system with a buffer of finite capacity, and where the machines are subjected to failures, minimal repairs, and condition-based preventive maintenance. Each machine can degrade into several discrete states, which are characterized by different performance parameters, ranging from perfect functioning to complete shutdown. When a specified degraded state is exited, a preventive maintenance action is performed to restore the machine to one of the higher performance states. We evaluate the impact of preventive maintenance strategies for each machine, in order to determine their impact on production rate and total cost. A methodology is developed to analyze the complex trade-off between the contributions of preventive maintenance and of the buffer to the system performance. It is shown that preventive maintenance should be scheduled not to optimize the performance for each machine individually; its scheduling is best considered from the perspective of the manufacturing system as a whole. The analysis also reveals the importance of considering machine speeds when optimizing the choice of maintenance policy.

Suggested Citation

  • Fitouhi, Mohamed-Chahir & Nourelfath, Mustapha & Gershwin, Stanley B., 2017. "Performance evaluation of a two-machine line with a finite buffer and condition-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 61-72.
  • Handle: RePEc:eee:reensy:v:166:y:2017:i:c:p:61-72
    DOI: 10.1016/j.ress.2017.03.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832017303733
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2017.03.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Soro, Isaac W. & Nourelfath, Mustapha & Aït-Kadi, Daoud, 2010. "Performance evaluation of multi-state degraded systems with minimal repairs and imperfect preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 95(2), pages 65-69.
    2. Tan, Baris, 1998. "Effects of variability on the due-time performance of a continuous materials flow production system in series," International Journal of Production Economics, Elsevier, vol. 54(1), pages 87-100, January.
    3. Belmansour, Ahmed-Tidjani & Nourelfath, Mustapha, 2010. "An aggregation method for performance evaluation of a tandem homogenous production line with machines having multiple failure modes," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1193-1201.
    4. Tan, BarIs & Gershwin, Stanley B., 2009. "Analysis of a general Markovian two-stage continuous-flow production system with a finite buffer," International Journal of Production Economics, Elsevier, vol. 120(2), pages 327-339, August.
    5. Y L Zhang & R C M Yam & M J Zuo, 2002. "Optimal replacement policy for a multistate repairable system," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(3), pages 336-341, March.
    6. Barış Tan & Stanley Gershwin, 2011. "Modelling and analysis of Markovian continuous flow systems with a finite buffer," Annals of Operations Research, Springer, vol. 182(1), pages 5-30, January.
    7. Marcello Colledani & Stanley Gershwin, 2013. "A decomposition method for approximate evaluation of continuous flow multi-stage lines with general Markovian machines," Annals of Operations Research, Springer, vol. 209(1), pages 5-40, October.
    8. Richard E. Barlow & Alexander S. Wu, 1978. "Coherent Systems with Multi-State Components," Mathematics of Operations Research, INFORMS, vol. 3(4), pages 275-281, November.
    9. Gregory Levitin, 2005. "The Universal Generating Function in Reliability Analysis and Optimization," Springer Series in Reliability Engineering, Springer, number 978-1-84628-245-4, September.
    10. Levitin, G. & Meizin, L., 2001. "Structure optimization for continuous production systems with buffers under reliability constraints," International Journal of Production Economics, Elsevier, vol. 70(1), pages 77-87, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei, Shuaichong & Nourelfath, Mustapha & Nahas, Nabil, 2023. "Analysis of a production line subject to degradation and preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    2. Zhang, Yongjin & Zhao, Ming & Zhang, Yanjun & Pan, Ruilin & Cai, Jing, 2020. "Dynamic and steady-state performance analysis for multi-state repairable reconfigurable manufacturing systems with buffers," European Journal of Operational Research, Elsevier, vol. 283(2), pages 491-510.
    3. Yang, Hongbing & Li, Wenchao & Wang, Bin, 2021. "Joint optimization of preventive maintenance and production scheduling for multi-state production systems based on reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    4. Zhang, Ning & Qi, Faqun & Zhang, Chengjie & Zhou, Hongming, 2022. "Joint optimization of condition-based maintenance policy and buffer capacity for a two-unit series system," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    5. Zhou, Yifan & Guo, Yiming & Lin, Tian Ran & Ma, Lin, 2018. "Maintenance optimisation of a series production system with intermediate buffers using a multi-agent FMDP," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 39-48.
    6. Maria Chiara Magnanini & Tullio Tolio, 2020. "Switching- and hedging- point policy for preventive maintenance with degrading machines: application to a two-machine line," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 241-271, June.
    7. Yifan Zhou & Chao Yuan & Tian Ran Lin & Lin Ma, 2021. "Maintenance policy structure investigation and optimisation of a complex production system with intermediate buffers," Journal of Risk and Reliability, , vol. 235(3), pages 458-473, June.
    8. Shuyuan Gan & Bolun Wang & Zhifang Song, 2021. "A Combined Maintenance Strategy Considering Spares, Buffer, and Quality," Journal of Risk and Reliability, , vol. 235(3), pages 431-445, June.
    9. Sachs, F.E. & Helber, S. & Kiesmüller, G.P., 2022. "Evaluation of Unreliable Flow Lines with Limited Buffer Capacities and Spare Part Provisioning," European Journal of Operational Research, Elsevier, vol. 302(2), pages 544-559.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nourelfath, Mustapha & Châtelet, Eric & Nahas, Nabil, 2012. "Joint redundancy and imperfect preventive maintenance optimization for series–parallel multi-state degraded systems," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 51-60.
    2. Belmansour, Ahmed-Tidjani & Nourelfath, Mustapha, 2010. "An aggregation method for performance evaluation of a tandem homogenous production line with machines having multiple failure modes," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1193-1201.
    3. Yifan Zhou & Chao Yuan & Tian Ran Lin & Lin Ma, 2021. "Maintenance policy structure investigation and optimisation of a complex production system with intermediate buffers," Journal of Risk and Reliability, , vol. 235(3), pages 458-473, June.
    4. Chen, Yiming & Liu, Yu & Jiang, Tao, 2021. "Optimal maintenance strategy for multi-state systems with single maintenance capacity and arbitrarily distributed maintenance time," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    5. Ünsal Özdoğru & Tayfur Altiok, 2015. "Continuous material flow systems: analysis of marine ports handling bulk materials," Annals of Operations Research, Springer, vol. 231(1), pages 79-104, August.
    6. Nahas, Nabil & Khatab, Abdelhakim & Ait-Kadi, Daoud & Nourelfath, Mustapha, 2008. "Extended great deluge algorithm for the imperfect preventive maintenance optimization of multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 93(11), pages 1658-1672.
    7. Dong, Wenjie & Liu, Sifeng & Tao, Liangyan & Cao, Yingsai & Fang, Zhigeng, 2019. "Reliability variation of multi-state components with inertial effect of deteriorating output performances," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 176-185.
    8. Coit, David W. & Zio, Enrico, 2019. "The evolution of system reliability optimization," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    9. Wei, Shuaichong & Nourelfath, Mustapha & Nahas, Nabil, 2023. "Analysis of a production line subject to degradation and preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    10. Chao-Hui Huang & Chun-Ho Wang, 2016. "Optimization of preventive maintenance for a multi-state degraded system by monitoring component performance," Journal of Intelligent Manufacturing, Springer, vol. 27(6), pages 1151-1170, December.
    11. Zhang, Ning & Qi, Faqun & Zhang, Chengjie & Zhou, Hongming, 2022. "Joint optimization of condition-based maintenance policy and buffer capacity for a two-unit series system," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    12. Tian, Zhigang & Levitin, Gregory & Zuo, Ming J., 2009. "A joint reliability–redundancy optimization approach for multi-state series–parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1568-1576.
    13. Elisa Gebennini & Andrea Grassi & Cesare Fantuzzi, 2015. "The two-machine one-buffer continuous time model with restart policy," Annals of Operations Research, Springer, vol. 231(1), pages 33-64, August.
    14. Shao, Changzheng & Ding, Yi, 2020. "Two-interdependent-performance multi-state system: Definitions and reliability evaluation," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    15. Jean-Sébastien Tancrez, 2020. "A decomposition method for assembly/disassembly systems with blocking and general distributions," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 272-296, June.
    16. Soro, Isaac W. & Nourelfath, Mustapha & Aït-Kadi, Daoud, 2010. "Performance evaluation of multi-state degraded systems with minimal repairs and imperfect preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 95(2), pages 65-69.
    17. Wu, Bei & Cui, Lirong & Fang, Chen, 2020. "Multi-state balanced systems with multiple failure criteria," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    18. Jafary, Bentolhoda & Fiondella, Lance, 2016. "A universal generating function-based multi-state system performance model subject to correlated failures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 16-27.
    19. Pan, Zhengqiang & Balakrishnan, Narayanaswamy, 2011. "Reliability modeling of degradation of products with multiple performance characteristics based on gamma processes," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 949-957.
    20. Rashika Gupta & Manju Agarwal, 2006. "Penalty guided genetic search for redundancy optimization in multi-state series-parallel power system," Journal of Combinatorial Optimization, Springer, vol. 12(3), pages 257-277, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:166:y:2017:i:c:p:61-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.