IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v203y2010i1p230-240.html
   My bibliography  Save this article

A simulation study of the fleet sizing problem arising in offshore anchor handling operations

Author

Listed:
  • Shyshou, Aliaksandr
  • Gribkovskaia, Irina
  • Barceló, Jaume

Abstract

A fleet sizing problem arising in anchor handling operations related to movement of offshore mobile units is presented in this paper. Typically, the intensity of these operations is unevenly spread throughout the year. The operations are performed by dedicated vessels, which can be hired either on the long-term basis or on the spot market. Spot rates are frequently a magnitude higher than long-term rates, and vessels are hired on the spot market if there is a shortage of long-term vessels to cover the ongoing anchor handling operations. Deciding the cost-optimal fleet of vessels on the long-term hire to cover future operations is a problem facing offshore oil and gas operators. This decision has a heavy economic impact as anchor handling vessels are among the most expensive ones. The problem is highly stochastic because durations of anchor handling operations vary and depend on uncertain weather conditions. Moreover, future spot rates for anchor handling vessels are extremely volatile. The objective of this paper is to describe a simulation model for the fleet sizing problem. The study was initiated by the largest Norwegian offshore oil and gas operator and has received considerable acceptance among the planners.

Suggested Citation

  • Shyshou, Aliaksandr & Gribkovskaia, Irina & Barceló, Jaume, 2010. "A simulation study of the fleet sizing problem arising in offshore anchor handling operations," European Journal of Operational Research, Elsevier, vol. 203(1), pages 230-240, May.
  • Handle: RePEc:eee:ejores:v:203:y:2010:i:1:p:230-240
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00514-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marielle Christiansen & Kjetil Fagerholt & David Ronen, 2004. "Ship Routing and Scheduling: Status and Perspectives," Transportation Science, INFORMS, vol. 38(1), pages 1-18, February.
    2. L. Jeff Hong & Barry L. Nelson, 2006. "Discrete Optimization via Simulation Using COMPASS," Operations Research, INFORMS, vol. 54(1), pages 115-129, February.
    3. Octavio Richetta & Richard C. Larson, 1997. "Modeling the Increased Complexity of New York City's Refuse Marine Transport System," Transportation Science, INFORMS, vol. 31(3), pages 272-293, August.
    4. Quadrifoglio, Luca & Dessouky, Maged M. & Ordóñez, Fernando, 2008. "A simulation study of demand responsive transit system design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(4), pages 718-737, May.
    5. Richard C. Larson, 1988. "Transporting Sludge to the 106-Mile Site: An Inventory/Routing Model for Fleet Sizing and Logistics System Design," Transportation Science, INFORMS, vol. 22(3), pages 186-198, August.
    6. Justin Boesel & Barry L. Nelson & Seong-Hee Kim, 2003. "Using Ranking and Selection to “Clean Up” after Simulation Optimization," Operations Research, INFORMS, vol. 51(5), pages 814-825, October.
    7. Godwin, T. & Gopalan, Ram & Narendran, T.T., 2008. "Tactical locomotive fleet sizing for freight train operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(3), pages 440-454, May.
    8. Akio Imai & Fausto Rivera, 2001. "Strategic fleet size planning for maritime refrigerated containers," Maritime Policy & Management, Taylor & Francis Journals, vol. 28(4), pages 361-374, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taylor, James W. & Jeon, Jooyoung, 2018. "Probabilistic forecasting of wave height for offshore wind turbine maintenance," European Journal of Operational Research, Elsevier, vol. 267(3), pages 877-890.
    2. Wang, Xin & Fagerholt, Kjetil & Wallace, Stein W., 2018. "Planning for charters: A stochastic maritime fleet composition and deployment problem," Omega, Elsevier, vol. 79(C), pages 54-66.
    3. Arslan, Ayşe N. & Papageorgiou, Dimitri J., 2017. "Bulk ship fleet renewal and deployment under uncertainty: A multi-stage stochastic programming approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 97(C), pages 69-96.
    4. Amiri, Mohsen & Amin, Saman Hassanzadeh & Tavakkoli-Moghaddam, Reza, 2019. "A Lagrangean decomposition approach for a novel two-echelon node-based location-routing problem in an offshore oil and gas supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 96-114.
    5. Maciel M. Queiroz & André Bergsten Mendes, 2020. "Critical Success Factors of the Brazilian Offshore Support Vessel Industry: A Flexible Systems Approach," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 21(1), pages 33-48, June.
    6. Pantuso, Giovanni & Fagerholt, Kjetil & Hvattum, Lars Magnus, 2014. "A survey on maritime fleet size and mix problems," European Journal of Operational Research, Elsevier, vol. 235(2), pages 341-349.
    7. Lin, Dung-Ying & Chang, Yu-Ting, 2018. "Ship routing and freight assignment problem for liner shipping: Application to the Northern Sea Route planning problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 47-70.
    8. Barlow, Euan & Tezcaner Öztürk, Diclehan & Revie, Matthew & Akartunalı, Kerem & Day, Alexander H. & Boulougouris, Evangelos, 2018. "A mixed-method optimisation and simulation framework for supporting logistical decisions during offshore wind farm installations," European Journal of Operational Research, Elsevier, vol. 264(3), pages 894-906.
    9. Ksciuk, Jana & Kuhlemann, Stefan & Tierney, Kevin & Koberstein, Achim, 2023. "Uncertainty in maritime ship routing and scheduling: A Literature review," European Journal of Operational Research, Elsevier, vol. 308(2), pages 499-524.
    10. Christiansen, Marielle & Fagerholt, Kjetil & Nygreen, Bjørn & Ronen, David, 2013. "Ship routing and scheduling in the new millennium," European Journal of Operational Research, Elsevier, vol. 228(3), pages 467-483.
    11. Hamidreza Eskandari & Ehsan Mahmoodi, 2016. "A simulation-based multi-objective optimization study of the fleet sizing problem in the offshore industry," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 18(4), pages 436-457, December.
    12. Cruz, Roberto & Bergsten Mendes, André & Bahiense, Laura & Wu, Yue, 2019. "Integrating berth allocation decisions in a fleet composition and periodic routing problem of platform supply vessels," European Journal of Operational Research, Elsevier, vol. 275(1), pages 334-346.
    13. Vanga, Ratnaji & Venkateswaran, Jayendran, 2020. "Fleet sizing of reusable articles under uncertain demand and turnaround times," European Journal of Operational Research, Elsevier, vol. 285(2), pages 566-582.
    14. Lin, Dung-Ying & Tsai, Yu-Yun, 2014. "The ship routing and freight assignment problem for daily frequency operation of maritime liner shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 67(C), pages 52-70.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omar Besbes & Sergei Savin, 2009. "Going Bunkers: The Joint Route Selection and Refueling Problem," Manufacturing & Service Operations Management, INFORMS, vol. 11(4), pages 694-711, February.
    2. Marielle Christiansen & Kjetil Fagerholt & David Ronen, 2004. "Ship Routing and Scheduling: Status and Perspectives," Transportation Science, INFORMS, vol. 38(1), pages 1-18, February.
    3. Pantuso, Giovanni & Fagerholt, Kjetil & Hvattum, Lars Magnus, 2014. "A survey on maritime fleet size and mix problems," European Journal of Operational Research, Elsevier, vol. 235(2), pages 341-349.
    4. Zheng, Jianfeng & Sun, Zhuo & Zhang, Fangjun, 2016. "Measuring the perceived container leasing prices in liner shipping network design with empty container repositioning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 123-140.
    5. Arianna Alfieri & Andrea Matta & Giulia Pedrielli, 2015. "Mathematical programming models for joint simulation–optimization applied to closed queueing networks," Annals of Operations Research, Springer, vol. 231(1), pages 105-127, August.
    6. Richard Charles Larson, 2002. "Public Sector Operations Research: A Personal Journey," Operations Research, INFORMS, vol. 50(1), pages 135-145, February.
    7. Jia, Shuai & Li, Chung-Lun & Xu, Zhou, 2020. "A simulation optimization method for deep-sea vessel berth planning and feeder arrival scheduling at a container port," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 174-196.
    8. Kabirian, Alireza & Ólafsson, Sigurdur, 2011. "Continuous optimization via simulation using Golden Region search," European Journal of Operational Research, Elsevier, vol. 208(1), pages 19-27, January.
    9. Fagerholt, Kjetil & Christiansen, Marielle & Magnus Hvattum, Lars & Johnsen, Trond A.V. & Vabø, Thor J., 2010. "A decision support methodology for strategic planning in maritime transportation," Omega, Elsevier, vol. 38(6), pages 465-474, December.
    10. Hamidreza Eskandari & Ehsan Mahmoodi, 2016. "A simulation-based multi-objective optimization study of the fleet sizing problem in the offshore industry," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 18(4), pages 436-457, December.
    11. Tsai, Shing Chih & Fu, Sheng Yang, 2014. "Genetic-algorithm-based simulation optimization considering a single stochastic constraint," European Journal of Operational Research, Elsevier, vol. 236(1), pages 113-125.
    12. Lin, Dung-Ying & Tsai, Yu-Yun, 2014. "The ship routing and freight assignment problem for daily frequency operation of maritime liner shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 67(C), pages 52-70.
    13. Shing Chih Tsai, 2013. "Rapid Screening Procedures for Zero-One Optimization via Simulation," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 317-331, May.
    14. Miguel Lejeune & François Margot, 2011. "Optimization for simulation: LAD accelerator," Annals of Operations Research, Springer, vol. 188(1), pages 285-305, August.
    15. Lin, Dung-Ying & Chang, Yu-Ting, 2018. "Ship routing and freight assignment problem for liner shipping: Application to the Northern Sea Route planning problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 47-70.
    16. Giovanni Pantuso & Kjetil Fagerholt & Stein W. Wallace, 2016. "Uncertainty in Fleet Renewal: A Case from Maritime Transportation," Transportation Science, INFORMS, vol. 50(2), pages 390-407, May.
    17. Bredström, David & Rönnqvist, Mikael, 2006. "Supply Chain Optimization in Pulp Distribution using a Rolling Horizon Solution Approach," Discussion Papers 2006/17, Norwegian School of Economics, Department of Business and Management Science.
    18. Wang, Shuaian & Meng, Qiang, 2012. "Liner ship route schedule design with sea contingency time and port time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 615-633.
    19. Hennig, F. & Nygreen, B. & Christiansen, M. & Fagerholt, K. & Furman, K.C. & Song, J. & Kocis, G.R. & Warrick, P.H., 2012. "Maritime crude oil transportation – A split pickup and split delivery problem," European Journal of Operational Research, Elsevier, vol. 218(3), pages 764-774.
    20. Wu, Lingxiao & Pan, Kai & Wang, Shuaian & Yang, Dong, 2018. "Bulk ship scheduling in industrial shipping with stochastic backhaul canvassing demand," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 117-136.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:203:y:2010:i:1:p:230-240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.