IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v188y2011i1p285-30510.1007-s10479-009-0518-3.html
   My bibliography  Save this article

Optimization for simulation: LAD accelerator

Author

Listed:
  • Miguel Lejeune
  • François Margot

Abstract

The goal of this paper is to address the problem of evaluating the performance of a system running under unknown values for its stochastic parameters. A new approach called LAD for Simulation, based on simulation and classification software, is presented. It uses a number of simulations with very few replications and records the mean value of directly measurable quantities (called observables). These observables are used as input to a classification model that produces a prediction for the performance of the system. Application to an assemble-to-order system from the literature is described and detailed results illustrate the strength of the method. Copyright Springer Science+Business Media, LLC 2011

Suggested Citation

  • Miguel Lejeune & François Margot, 2011. "Optimization for simulation: LAD accelerator," Annals of Operations Research, Springer, vol. 188(1), pages 285-305, August.
  • Handle: RePEc:spr:annopr:v:188:y:2011:i:1:p:285-305:10.1007/s10479-009-0518-3
    DOI: 10.1007/s10479-009-0518-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-009-0518-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-009-0518-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael C. Fu, 2002. "Feature Article: Optimization for simulation: Theory vs. Practice," INFORMS Journal on Computing, INFORMS, vol. 14(3), pages 192-215, August.
    2. Peter Hammer & Tibérius Bonates, 2006. "Logical analysis of data—An overview: From combinatorial optimization to medical applications," Annals of Operations Research, Springer, vol. 148(1), pages 203-225, November.
    3. L. Jeff Hong & Barry L. Nelson, 2006. "Discrete Optimization via Simulation Using COMPASS," Operations Research, INFORMS, vol. 54(1), pages 115-129, February.
    4. James P. Kelly, 2002. "Simulation Optimization is Evolving," INFORMS Journal on Computing, INFORMS, vol. 14(3), pages 223-225, August.
    5. Y-C Ho & C G Cassandras & C-H Chen & L Dai, 2000. "Ordinal optimisation and simulation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(4), pages 490-500, April.
    6. Justin Boesel & Barry L. Nelson & Seong-Hee Kim, 2003. "Using Ranking and Selection to “Clean Up” after Simulation Optimization," Operations Research, INFORMS, vol. 51(5), pages 814-825, October.
    7. P. Hammer & A. Kogan & M. Lejeune, 2011. "Reverse-engineering country risk ratings: a combinatorial non-recursive model," Annals of Operations Research, Springer, vol. 188(1), pages 185-213, August.
    8. Bernd Engelmann & Robert Rauhmeier (ed.), 2006. "The Basel II Risk Parameters," Springer Books, Springer, number 978-3-540-33087-5, April.
    9. Stephen E. Chick & Koichiro Inoue, 2001. "New Two-Stage and Sequential Procedures for Selecting the Best Simulated System," Operations Research, INFORMS, vol. 49(5), pages 732-743, October.
    10. Belarmino Adenso-Díaz & Manuel Laguna, 2006. "Fine-Tuning of Algorithms Using Fractional Experimental Designs and Local Search," Operations Research, INFORMS, vol. 54(1), pages 99-114, February.
    11. Barry L. Nelson & Julie Swann & David Goldsman & Wheyming Song, 2001. "Simple Procedures for Selecting the Best Simulated System When the Number of Alternatives is Large," Operations Research, INFORMS, vol. 49(6), pages 950-963, December.
    12. Benjamin W. Lin & Ronald L. Rardin, 1979. "Controlled Experimental Design for Statistical Comparison of Integer Programming Algorithms," Management Science, INFORMS, vol. 25(12), pages 1258-1271, December.
    13. Hammer, P.L. & Kogan, A. & Lejeune, M.A., 2006. "Modeling country risk ratings using partial orders," European Journal of Operational Research, Elsevier, vol. 175(2), pages 836-859, December.
    14. Michael C. Fu, 2002. "Simulation Optimization in the Future: Evolution or Revolution?," INFORMS Journal on Computing, INFORMS, vol. 14(3), pages 226-227, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lejeune, Miguel & Lozin, Vadim & Lozina, Irina & Ragab, Ahmed & Yacout, Soumaya, 2019. "Recent advances in the theory and practice of Logical Analysis of Data," European Journal of Operational Research, Elsevier, vol. 275(1), pages 1-15.
    2. Bagchi, Prabir & Lejeune, Miguel A. & Alam, A., 2014. "How supply competency affects FDI decisions: Some insights," International Journal of Production Economics, Elsevier, vol. 147(PB), pages 239-251.
    3. Travaughn C. Bain & Juan F. Avila-Herrera & Ersoy Subasi & Munevver Mine Subasi, 2020. "Logical analysis of multiclass data with relaxed patterns," Annals of Operations Research, Springer, vol. 287(1), pages 11-35, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Xu & Barry L. Nelson & L. Jeff Hong, 2013. "An Adaptive Hyperbox Algorithm for High-Dimensional Discrete Optimization via Simulation Problems," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 133-146, February.
    2. Kabirian, Alireza & Ólafsson, Sigurdur, 2011. "Continuous optimization via simulation using Golden Region search," European Journal of Operational Research, Elsevier, vol. 208(1), pages 19-27, January.
    3. Shing Chih Tsai, 2013. "Rapid Screening Procedures for Zero-One Optimization via Simulation," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 317-331, May.
    4. Sigrún Andradóttir & Andrei A. Prudius, 2009. "Balanced Explorative and Exploitative Search with Estimation for Simulation Optimization," INFORMS Journal on Computing, INFORMS, vol. 21(2), pages 193-208, May.
    5. L. Jeff Hong & Barry L. Nelson, 2006. "Discrete Optimization via Simulation Using COMPASS," Operations Research, INFORMS, vol. 54(1), pages 115-129, February.
    6. Lejeune, Miguel & Lozin, Vadim & Lozina, Irina & Ragab, Ahmed & Yacout, Soumaya, 2019. "Recent advances in the theory and practice of Logical Analysis of Data," European Journal of Operational Research, Elsevier, vol. 275(1), pages 1-15.
    7. Zhongshun Shi & Siyang Gao & Hui Xiao & Weiwei Chen, 2019. "A worst‐case formulation for constrained ranking and selection with input uncertainty," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(8), pages 648-662, December.
    8. Qiushi Chen & Lei Zhao & Jan C. Fransoo & Zhe Li, 2019. "Dual-mode inventory management under a chance credit constraint," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 147-178, March.
    9. Shing Chih Tsai & Tse Yang, 2017. "Rapid screening algorithms for stochastically constrained problems," Annals of Operations Research, Springer, vol. 254(1), pages 425-447, July.
    10. Eric C. Ni & Dragos F. Ciocan & Shane G. Henderson & Susan R. Hunter, 2017. "Efficient Ranking and Selection in Parallel Computing Environments," Operations Research, INFORMS, vol. 65(3), pages 821-836, June.
    11. Tsai, Shing Chih & Fu, Sheng Yang, 2014. "Genetic-algorithm-based simulation optimization considering a single stochastic constraint," European Journal of Operational Research, Elsevier, vol. 236(1), pages 113-125.
    12. Bagchi, Prabir & Lejeune, Miguel A. & Alam, A., 2014. "How supply competency affects FDI decisions: Some insights," International Journal of Production Economics, Elsevier, vol. 147(PB), pages 239-251.
    13. Justin Boesel & Barry L. Nelson & Seong-Hee Kim, 2003. "Using Ranking and Selection to “Clean Up” after Simulation Optimization," Operations Research, INFORMS, vol. 51(5), pages 814-825, October.
    14. Jia, Shuai & Li, Chung-Lun & Xu, Zhou, 2020. "A simulation optimization method for deep-sea vessel berth planning and feeder arrival scheduling at a container port," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 174-196.
    15. Kleijnen, J.P.C. & van Beers, W.C.M. & van Nieuwenhuyse, I., 2008. "Constrained Optimization in Simulation : A Novel Approach," Discussion Paper 2008-95, Tilburg University, Center for Economic Research.
    16. Zhou, Tianli & Fields, Evan & Osorio, Carolina, 2023. "A data-driven discrete simulation-based optimization algorithm for car-sharing service design," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    17. Kleijnen, J.P.C. & Wan, J., 2006. "Optimization of Simulated Inventory Systems : OptQuest and Alternatives," Discussion Paper 2006-75, Tilburg University, Center for Economic Research.
    18. Jing Xie & Peter I. Frazier & Stephen E. Chick, 2016. "Bayesian Optimization via Simulation with Pairwise Sampling and Correlated Prior Beliefs," Operations Research, INFORMS, vol. 64(2), pages 542-559, April.
    19. Powell, Warren B., 2019. "A unified framework for stochastic optimization," European Journal of Operational Research, Elsevier, vol. 275(3), pages 795-821.
    20. Andrei A. Prudius & Sigrún Andradóttir, 2012. "Averaging frameworks for simulation optimization with applications to simulated annealing," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(6), pages 411-429, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:188:y:2011:i:1:p:285-305:10.1007/s10479-009-0518-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.