IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v247y2025ics0304407625000077.html
   My bibliography  Save this article

Simulation error and numerical instability in estimating random coefficient logit demand models

Author

Listed:
  • Brunner, Daniel
  • Heiss, Florian
  • Romahn, André
  • Weiser, Constantin

Abstract

The nonlinear GMM-IV estimator of Berry, Levinsohn and Pakes (1995) can suffer from numerical instability resulting in a wide range of parameter estimates and economic implications. This has been reported to depend on technical details such as the choice of the optimization algorithm, starting values, and convergence criteria. We show that numerical approximation errors in the estimator’s moment function are the main driver of this instability. With accurate approximation, the estimation approach is well-behaved. We provide a simple method to determine the required number of simulation draws.

Suggested Citation

  • Brunner, Daniel & Heiss, Florian & Romahn, André & Weiser, Constantin, 2025. "Simulation error and numerical instability in estimating random coefficient logit demand models," Journal of Econometrics, Elsevier, vol. 247(C).
  • Handle: RePEc:eee:econom:v:247:y:2025:i:c:s0304407625000077
    DOI: 10.1016/j.jeconom.2025.105953
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407625000077
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2025.105953?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Jean‐Pierre Dubé & Jeremy T. Fox & Che‐Lin Su, 2012. "Improving the Numerical Performance of Static and Dynamic Aggregate Discrete Choice Random Coefficients Demand Estimation," Econometrica, Econometric Society, vol. 80(5), pages 2231-2267, September.
    2. Reynaert, Mathias & Verboven, Frank, 2014. "Improving the performance of random coefficients demand models: The role of optimal instruments," Journal of Econometrics, Elsevier, vol. 179(1), pages 83-98.
    3. Heiss, Florian & Winschel, Viktor, 2008. "Likelihood approximation by numerical integration on sparse grids," Journal of Econometrics, Elsevier, vol. 144(1), pages 62-80, May.
    4. Steven Berry & Philip Haile, 2016. "Identification in Differentiated Products Markets," Annual Review of Economics, Annual Reviews, vol. 8(1), pages 27-52, October.
    5. Steve Berry & Oliver B. Linton & Ariel Pakes, 2004. "Limit Theorems for Estimating the Parameters of Differentiated Product Demand Systems," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 71(3), pages 613-654.
    6. McFadden, Daniel, 1989. "A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration," Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
    7. Christopher R. Knittel & Konstantinos Metaxoglou, 2014. "Estimation of Random-Coefficient Demand Models: Two Empiricists' Perspective," The Review of Economics and Statistics, MIT Press, vol. 96(1), pages 34-59, March.
    8. Chamberlain, Gary, 1987. "Asymptotic efficiency in estimation with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 34(3), pages 305-334, March.
    9. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-890, July.
    10. Hess, Stephane & Train, Kenneth E. & Polak, John W., 2006. "On the use of a Modified Latin Hypercube Sampling (MLHS) method in the estimation of a Mixed Logit Model for vehicle choice," Transportation Research Part B: Methodological, Elsevier, vol. 40(2), pages 147-163, February.
    11. Kenneth L. Judd & Ben Skrainka, 2011. "High performance quadrature rules: how numerical integration affects a popular model of product differentiation," CeMMAP working papers CWP03/11, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Christopher Conlon & Jeff Gortmaker, 2020. "Best practices for differentiated products demand estimation with PyBLP," RAND Journal of Economics, RAND Corporation, vol. 51(4), pages 1108-1161, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stépahne Auray & Nicolas Lepage-Saucier & Purevdorj Tuvaandor, 2018. "Doubly Robust GMM Inference and Differentiated Products Demand Models," Working Papers 2018-13, Center for Research in Economics and Statistics.
    2. Kaiser, Ulrich & Mendez, Susan J. & Rønde, Thomas & Ullrich, Hannes, 2014. "Regulation of pharmaceutical prices: Evidence from a reference price reform in Denmark," Journal of Health Economics, Elsevier, vol. 36(C), pages 174-187.
    3. Ketz, Philipp, 2019. "On asymptotic size distortions in the random coefficients logit model," Journal of Econometrics, Elsevier, vol. 212(2), pages 413-432.
    4. Mogens Fosgerau & Julien Monardo & André de Palma, 2024. "The Inverse Product Differentiation Logit Model," American Economic Journal: Microeconomics, American Economic Association, vol. 16(4), pages 329-370, November.
    5. Kandelhardt, Johannes, 2023. "Flexible estimation of random coefficient logit models of differentiated product demand," DICE Discussion Papers 399, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    6. Sun, Yutec & Ishihara, Masakazu, 2019. "A computationally efficient fixed point approach to dynamic structural demand estimation," Journal of Econometrics, Elsevier, vol. 208(2), pages 563-584.
    7. Lu, Zhentong & Shi, Xiaoxia & Tao, Jing, 2023. "Semi-nonparametric estimation of random coefficients logit model for aggregate demand," Journal of Econometrics, Elsevier, vol. 235(2), pages 2245-2265.
    8. Christopher Conlon & Jeff Gortmaker, 2020. "Best practices for differentiated products demand estimation with PyBLP," RAND Journal of Economics, RAND Corporation, vol. 51(4), pages 1108-1161, December.
    9. Freyberger, Joachim, 2015. "Asymptotic theory for differentiated products demand models with many markets," Journal of Econometrics, Elsevier, vol. 185(1), pages 162-181.
    10. Greg Lewis & Bora Ozaltun & Georgios Zervas, 2021. "Maximum Likelihood Estimation of Differentiated Products Demand Systems," Papers 2111.12397, arXiv.org.
    11. Steven T. Berry & Philip A. Haile, 2021. "Foundations of Demand Estimation," Cowles Foundation Discussion Papers 2301, Cowles Foundation for Research in Economics, Yale University.
    12. Laura Grigolon, 2021. "Blurred boundaries: A flexible approach for segmentation applied to the car market," Quantitative Economics, Econometric Society, vol. 12(4), pages 1273-1305, November.
    13. Reynaert, Mathias & Verboven, Frank, 2014. "Improving the performance of random coefficients demand models: The role of optimal instruments," Journal of Econometrics, Elsevier, vol. 179(1), pages 83-98.
    14. McFadden, Daniel, 2022. "Instability in mixed logit demand models," Journal of choice modelling, Elsevier, vol. 43(C).
    15. Bokhari, Farasat A.S. & Mariuzzo, Franco, 2018. "Demand estimation and merger simulations for drugs: Logits v. AIDS," International Journal of Industrial Organization, Elsevier, vol. 61(C), pages 653-685.
    16. Escobari, Diego, 2017. "Airport, airline and departure time choice and substitution patterns: An empirical analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 198-210.
    17. Friberg, Richard & Romahn, André, 2015. "Divestiture requirements as a tool for competition policy: A case from the Swedish beer market," International Journal of Industrial Organization, Elsevier, vol. 42(C), pages 1-18.
    18. Brett Hollenbeck & Kosuke Uetake, 2021. "Taxation and market power in the legal marijuana industry," RAND Journal of Economics, RAND Corporation, vol. 52(3), pages 559-595, September.
    19. Verboven, Frank & Bourreau, Marc & Sun, Yutec, 2018. "Market Entry, Fighting Brands and Tacit Collusion: The Case of the French Mobile Telecommunications Market," CEPR Discussion Papers 12866, C.E.P.R. Discussion Papers.
    20. Mandys, Filip & Taneja, Shivani, 2024. "Demand for green and fossil fuel automobiles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 190(C).

    More about this item

    Keywords

    ;
    ;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
    • L62 - Industrial Organization - - Industry Studies: Manufacturing - - - Automobiles; Other Transportation Equipment; Related Parts and Equipment

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:247:y:2025:i:c:s0304407625000077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.