IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Identification in Differentiated Products Markets

Empirical models of demand for -- and, often, supply of -- differentiated products are widely used in practice, typically employing parametric functional forms and distributions of consumer heterogeneity. We review some recent work studying identification in a broad class of such models. This work shows that parametric functional forms and distributional assumptions are not essential for identification. Rather, identification relies primarily on the standard requirement that instruments be available for the endogenous variables -- here, typically, prices and quantities. We discuss the kinds of instruments needed for identification and how the reliance on instruments can be reduced by nonparametric functional form restrictions or better data. We also discuss results on discrimination between alternative models of oligopoly competition.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://cowles.yale.edu/sites/default/files/files/pub/d20/d2019.pdf
Download Restriction: no

Paper provided by Cowles Foundation for Research in Economics, Yale University in its series Cowles Foundation Discussion Papers with number 2019.

as
in new window

Length: 36 pages
Date of creation: Aug 2015
Handle: RePEc:cwl:cwldpp:2019
Contact details of provider: Postal:
Yale University, Box 208281, New Haven, CT 06520-8281 USA

Phone: (203) 432-3702
Fax: (203) 432-6167
Web page: http://cowles.yale.edu/

More information through EDIRC

Order Information: Postal: Cowles Foundation, Yale University, Box 208281, New Haven, CT 06520-8281 USA

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Reynaert, Mathias & Verboven, Frank, 2014. "Improving the performance of random coefficients demand models: The role of optimal instruments," Journal of Econometrics, Elsevier, vol. 179(1), pages 83-98.
  2. Lau, Lawrence J., 1982. "On identifying the degree of competitiveness from industry price and output data," Economics Letters, Elsevier, vol. 10(1-2), pages 93-99.
  3. Victor Chernozhukov & Christian Hansen, 2005. "An IV Model of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 73(1), pages 245-261, 01.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:2019. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matthew C. Regan)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.