IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v491y2024ics0304380024000772.html
   My bibliography  Save this article

Simulating critical nutrient loadings of regime shift in the shallow plateau Lake Dianchi

Author

Listed:
  • Wu, Dongshao
  • Cao, Min
  • Gao, Wei
  • Duan, Zhongzhao
  • Zhang, Yuan

Abstract

The external inputs of nitrogen and phosphorus are crucial driving forces for regime shifts in lakes. However, the altered flow caused by anthropogenic activities and climate change complicates the transition process. Identifying critical nutrient loadings for state transitions and their relationship with flow change has become an increasingly crucial scientific issue for managing lake ecosystems. Lake Dianchi, a shallow plateau lake that suffers from long-term eutrophication and extensive water regulation, was used as a case study to explore the critical nutrient loading under changing flow regimes. To this end, we established the PCLake+ model for Lake Dianchi using the parameters from native submerged macrophytes and long-term observational data. The results showed the following. (1) From 2001 to 2018, the lake's trophic status was moderately eutrophic with slight inter-annual fluctuations, and the most severe period occurred in the summer and autumn. (2) The critical total nitrogen (TN) and total phosphorus (TP) loadings of the lake from the clear-water state dominated by submerged macrophytes to the turbid-water state dominated by algae were 45.89 mg N m-2d-1 and 3.53 mg P m-2d-1, respectively. Those from the turbid to the clear state were 26.78 mg N m-2d-1 and 2.06 mg P m-2d-1, respectively, which were close to the actual external inputs of TN and TP loadings, indicating that the lake entered a critical period for restoration. (3) The water level and inflow significantly changed the critical TN and TP loadings and impacted the restoration threshold more than degradation. Decreasing water level or increasing water inflow can effectively rise the critical TN and TP loadings of both degradation and restoration, which is conducive to accelerating the evolution of aquatic ecosystems towards a clear-water state dominated by submerged macrophytes.

Suggested Citation

  • Wu, Dongshao & Cao, Min & Gao, Wei & Duan, Zhongzhao & Zhang, Yuan, 2024. "Simulating critical nutrient loadings of regime shift in the shallow plateau Lake Dianchi," Ecological Modelling, Elsevier, vol. 491(C).
  • Handle: RePEc:eee:ecomod:v:491:y:2024:i:c:s0304380024000772
    DOI: 10.1016/j.ecolmodel.2024.110689
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380024000772
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2024.110689?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Janse, J.H. & Scheffer, M. & Lijklema, L. & Van Liere, L. & Sloot, J.S. & Mooij, W.M., 2010. "Estimating the critical phosphorus loading of shallow lakes with the ecosystem model PCLake: Sensitivity, calibration and uncertainty," Ecological Modelling, Elsevier, vol. 221(4), pages 654-665.
    2. Li, Xiaolin & Janssen, Annette B.G. & de Klein, Jeroen J.M. & Kroeze, Carolien & Strokal, Maryna & Ma, Lin & Zheng, Yi, 2019. "Modeling nutrients in Lake Dianchi (China) and its watershed," Agricultural Water Management, Elsevier, vol. 212(C), pages 48-59.
    3. Trisha L Spanbauer & Craig R Allen & David G Angeler & Tarsha Eason & Sherilyn C Fritz & Ahjond S Garmestani & Kirsty L Nash & Jeffery R Stone, 2014. "Prolonged Instability Prior to a Regime Shift," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-7, October.
    4. Jeff C. Ho & Anna M. Michalak & Nima Pahlevan, 2019. "Widespread global increase in intense lake phytoplankton blooms since the 1980s," Nature, Nature, vol. 574(7780), pages 667-670, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Janssen, Annette B.G. & Teurlincx, Sven & Beusen, Arthur H.W. & Huijbregts, Mark A.J. & Rost, Jasmijn & Schipper, Aafke M. & Seelen, Laura M.S. & Mooij, Wolf M. & Janse, Jan H., 2019. "PCLake+: A process-based ecological model to assess the trophic state of stratified and non-stratified freshwater lakes worldwide," Ecological Modelling, Elsevier, vol. 396(C), pages 23-32.
    2. Kong, Xiang-Zhen & Jørgensen, Sven Erik & He, Wei & Qin, Ning & Xu, Fu-Liu, 2013. "Predicting the restoration effects by a structural dynamic approach in Lake Chaohu, China," Ecological Modelling, Elsevier, vol. 266(C), pages 73-85.
    3. Bo Qin & Rong Wang & Xiangdong Yang & Qinghui Zhang & Jianan Zheng, 2023. "Reconstruction and Trends of Total Phosphorus in Shallow Lakes in Eastern China in The Past Century," Sustainability, MDPI, vol. 15(14), pages 1-15, July.
    4. Huang, Jiacong & Chen, Qiuwen & Peng, Jian & Gao, Junfeng, 2020. "Quantifying the cost-effectiveness of nutrient-removal strategies for a lowland rural watershed: Insights from process-based modeling," Ecological Modelling, Elsevier, vol. 431(C).
    5. repec:ags:aaea22:335506 is not listed on IDEAS
    6. Irina Gabriela Cara & Denis Țopa & Ioan Puiu & Gerard Jităreanu, 2022. "Biochar a Promising Strategy for Pesticide-Contaminated Soils," Agriculture, MDPI, vol. 12(10), pages 1-21, September.
    7. Ling Zheng & Yang Liu & Renhui Li & Yiming Yang & Yongguang Jiang, 2023. "Recent Advances in the Ecology of Bloom-Forming Raphidiopsis ( Cylindrospermopsis ) raciborskii : Expansion in China, Intraspecific Heterogeneity and Critical Factors for Invasion," IJERPH, MDPI, vol. 20(3), pages 1-13, January.
    8. Jian Zhou & Peter R. Leavitt & Kevin C. Rose & Xiwen Wang & Yibo Zhang & Kun Shi & Boqiang Qin, 2023. "Controls of thermal response of temperate lakes to atmospheric warming," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Charles A. Taylor & Geoffrey Heal, 2021. "Fertilizer and Algal Blooms: A Satellite Approach to Assessing Water Quality," NBER Chapters, in: Risks in Agricultural Supply Chains, pages 83-105, National Bureau of Economic Research, Inc.
    10. Ratté-Fortin, Claudie & Plante, Jean-François & Rousseau, Alain N. & Chokmani, Karem, 2023. "Parametric versus nonparametric machine learning modelling for conditional density estimation of natural events: Application to harmful algal blooms," Ecological Modelling, Elsevier, vol. 482(C).
    11. Alexander E. Cagle & Alona Armstrong & Giles Exley & Steven M. Grodsky & Jordan Macknick & John Sherwin & Rebecca R. Hernandez, 2020. "The Land Sparing, Water Surface Use Efficiency, and Water Surface Transformation of Floating Photovoltaic Solar Energy Installations," Sustainability, MDPI, vol. 12(19), pages 1-22, October.
    12. Dong Liu & Kun Shi & Peng Chen & Nuoxiao Yan & Lishan Ran & Tiit Kutser & Andrew N. Tyler & Evangelos Spyrakos & R. Iestyn Woolway & Yunlin Zhang & Hongtao Duan, 2024. "Substantial increase of organic carbon storage in Chinese lakes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Aparicio, Genoveva & Camacho, Maximo & Maté-Sánchez-Val, Mariluz, 2024. "Quantifying the impact: Are coastal areas impoverished by marine pollution?," Ecological Economics, Elsevier, vol. 221(C).
    14. Bai, Jing & Zhao, Jian & Zhang, Zhenyu & Tian, Ziqiang, 2022. "Assessment and a review of research on surface water quality modeling," Ecological Modelling, Elsevier, vol. 466(C).
    15. Enrique Cervantes-Astorga & Oscar Aguilar-Juárez & Danay Carrillo-Nieves & Misael Sebastián Gradilla-Hernández, 2021. "A GIS Methodology to Determine the Critical Regions for Mitigating Eutrophication in Large Territories: The Case of Jalisco, Mexico," Sustainability, MDPI, vol. 13(14), pages 1-21, July.
    16. Mariano Bresciani & Claudia Giardino & Alice Fabbretto & Andrea Pellegrino & Salvatore Mangano & Gary Free & Monica Pinardi, 2022. "Application of New Hyperspectral Sensors in the Remote Sensing of Aquatic Ecosystem Health: Exploiting PRISMA and DESIS for Four Italian Lakes," Resources, MDPI, vol. 11(2), pages 1-17, January.
    17. Changchun Peng & Zhijun Xie & Xing Jin, 2024. "Using Ensemble Learning for Remote Sensing Inversion of Water Quality Parameters in Poyang Lake," Sustainability, MDPI, vol. 16(8), pages 1-19, April.
    18. Yi, Xuan & Zou, Rui & Guo, Huaicheng, 2016. "Global sensitivity analysis of a three-dimensional nutrients-algae dynamic model for a large shallow lake," Ecological Modelling, Elsevier, vol. 327(C), pages 74-84.
    19. Huang, Jiacong & Gao, Junfeng, 2017. "An improved Ensemble Kalman Filter for optimizing parameters in a coupled phosphorus model for lowland polders in Lake Taihu Basin, China," Ecological Modelling, Elsevier, vol. 357(C), pages 14-22.
    20. Konstantinos Metaxoglou & Aaron Smith, 2022. "Nutrient Pollution and US Agriculture: Causal Effects, Integrated Assessment, and Implications of Climate Change," NBER Chapters, in: American Agriculture, Water Resources, and Climate Change, pages 297-341, National Bureau of Economic Research, Inc.
    21. Ratté-Fortin, Claudie & Chokmani, Karem & El Alem, Anas & Laurion, Isabelle, 2022. "A regional model to predict the occurrence of natural events: Application to phytoplankton blooms in continental waterbodies," Ecological Modelling, Elsevier, vol. 473(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:491:y:2024:i:c:s0304380024000772. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.