IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i3p1984-d1043262.html
   My bibliography  Save this article

Recent Advances in the Ecology of Bloom-Forming Raphidiopsis ( Cylindrospermopsis ) raciborskii : Expansion in China, Intraspecific Heterogeneity and Critical Factors for Invasion

Author

Listed:
  • Ling Zheng

    (Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China)

  • Yang Liu

    (College of Life Sciences, Henan Normal University, Xinxiang 453007, China)

  • Renhui Li

    (College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China)

  • Yiming Yang

    (Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China)

  • Yongguang Jiang

    (Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China)

Abstract

Water blooms caused by the invasive cyanobacterium Raphidiopsis raciborskii occur in many reservoirs in the tropical and subtropical regions of China. In recent decades, this species has spread rapidly to temperate regions. Phenotypic plasticity and climate warming are thought to promote the worldwide dispersion of R. raciborskii . However, investigations into the genetic and phenotypic diversities of this species have revealed significant intraspecific heterogeneity. In particular, competition between R. raciborskii and Microcystis aeruginosa was highly strain dependent. Although the concept of an ecotype was proposed to explain the heterogeneity of R. raciborskii strains with different geographic origins, microevolution is more reasonable for understanding the coexistence of different phenotypes and genotypes in the same environment. It has been suggested that intraspecific heterogeneity derived from microevolution is a strong driving force for the expansion of R. raciborskii . Additionally, temperature, nutrient fluctuations, and grazer disturbance are critical environmental factors that affect the population establishment of R. raciborskii in new environments. The present review provides new insights into the ecological mechanisms underlying the invasion of R. raciborskii in Chinese freshwater ecosystems.

Suggested Citation

  • Ling Zheng & Yang Liu & Renhui Li & Yiming Yang & Yongguang Jiang, 2023. "Recent Advances in the Ecology of Bloom-Forming Raphidiopsis ( Cylindrospermopsis ) raciborskii : Expansion in China, Intraspecific Heterogeneity and Critical Factors for Invasion," IJERPH, MDPI, vol. 20(3), pages 1-13, January.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:3:p:1984-:d:1043262
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/3/1984/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/3/1984/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jeff C. Ho & Anna M. Michalak & Nima Pahlevan, 2019. "Widespread global increase in intense lake phytoplankton blooms since the 1980s," Nature, Nature, vol. 574(7780), pages 667-670, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bo Qin & Rong Wang & Xiangdong Yang & Qinghui Zhang & Jianan Zheng, 2023. "Reconstruction and Trends of Total Phosphorus in Shallow Lakes in Eastern China in The Past Century," Sustainability, MDPI, vol. 15(14), pages 1-15, July.
    2. Bloem, Jeffrey R., 2023. "Technology Adoption, Agricultural Productivity, and Deforestation," 2023 Annual Meeting, July 23-25, Washington D.C. 335506, Agricultural and Applied Economics Association.
    3. Irina Gabriela Cara & Denis Țopa & Ioan Puiu & Gerard Jităreanu, 2022. "Biochar a Promising Strategy for Pesticide-Contaminated Soils," Agriculture, MDPI, vol. 12(10), pages 1-21, September.
    4. Jian Zhou & Peter R. Leavitt & Kevin C. Rose & Xiwen Wang & Yibo Zhang & Kun Shi & Boqiang Qin, 2023. "Controls of thermal response of temperate lakes to atmospheric warming," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Charles A. Taylor & Geoffrey Heal, 2021. "Fertilizer and Algal Blooms: A Satellite Approach to Assessing Water Quality," NBER Chapters, in: Risks in Agricultural Supply Chains, National Bureau of Economic Research, Inc.
    6. Ratté-Fortin, Claudie & Plante, Jean-François & Rousseau, Alain N. & Chokmani, Karem, 2023. "Parametric versus nonparametric machine learning modelling for conditional density estimation of natural events: Application to harmful algal blooms," Ecological Modelling, Elsevier, vol. 482(C).
    7. Alexander E. Cagle & Alona Armstrong & Giles Exley & Steven M. Grodsky & Jordan Macknick & John Sherwin & Rebecca R. Hernandez, 2020. "The Land Sparing, Water Surface Use Efficiency, and Water Surface Transformation of Floating Photovoltaic Solar Energy Installations," Sustainability, MDPI, vol. 12(19), pages 1-22, October.
    8. Bai, Jing & Zhao, Jian & Zhang, Zhenyu & Tian, Ziqiang, 2022. "Assessment and a review of research on surface water quality modeling," Ecological Modelling, Elsevier, vol. 466(C).
    9. Enrique Cervantes-Astorga & Oscar Aguilar-Juárez & Danay Carrillo-Nieves & Misael Sebastián Gradilla-Hernández, 2021. "A GIS Methodology to Determine the Critical Regions for Mitigating Eutrophication in Large Territories: The Case of Jalisco, Mexico," Sustainability, MDPI, vol. 13(14), pages 1-21, July.
    10. Mariano Bresciani & Claudia Giardino & Alice Fabbretto & Andrea Pellegrino & Salvatore Mangano & Gary Free & Monica Pinardi, 2022. "Application of New Hyperspectral Sensors in the Remote Sensing of Aquatic Ecosystem Health: Exploiting PRISMA and DESIS for Four Italian Lakes," Resources, MDPI, vol. 11(2), pages 1-17, January.
    11. Konstantinos Metaxoglou & Aaron Smith, 2022. "Nutrient Pollution and US Agriculture: Causal Effects, Integrated Assessment, and Implications of Climate Change," NBER Chapters, in: American Agriculture, Water Resources, and Climate Change, pages 297-341, National Bureau of Economic Research, Inc.
    12. Ratté-Fortin, Claudie & Chokmani, Karem & El Alem, Anas & Laurion, Isabelle, 2022. "A regional model to predict the occurrence of natural events: Application to phytoplankton blooms in continental waterbodies," Ecological Modelling, Elsevier, vol. 473(C).
    13. Liao, Tiancai, 2022. "The impact of plankton body size on phytoplankton-zooplankton dynamics in the absence and presence of stochastic environmental fluctuation," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    14. Yongguang Jiang & Peng Xiao & Gongliang Yu & Gaofei Song & Renhui Li, 2020. "Revealing Cryptic Changes of Cyanobacterial Community Structure in Two Eutrophic Lakes Using eDNA Sequencing," IJERPH, MDPI, vol. 17(17), pages 1-14, September.
    15. Kevin C. Rose & Britta Bierwagen & Scott D. Bridgham & Daren M. Carlisle & Charles P. Hawkins & N. LeRoy Poff & Jordan S. Read & Jason R. Rohr & Jasmine E. Saros & Craig E. Williamson, 2023. "Indicators of the effects of climate change on freshwater ecosystems," Climatic Change, Springer, vol. 176(3), pages 1-20, March.
    16. Jingtai Li & Yao Liu & Siying Xie & Min Li & Li Chen & Cuiling Wu & Dandan Yan & Zhaoqing Luan, 2022. "Landsat-Satellite-Based Analysis of Long-Term Temporal Spatial Dynamics of Cyanobacterial Blooms: A Case Study in Taihu Lake," Land, MDPI, vol. 11(12), pages 1-19, December.
    17. Wu, Haihua & Liang, Cong & Zhang, Chaofan & Chang, Haixing & Zhang, Xianming & Zhang, Yuanbo & Zhong, Nianbing & Xu, Yunlan & Zhong, Dengjie & He, Xuefeng & Zhang, Lei & Ho, Shih-Hsin, 2022. "Mechanisms and enhancements on harmful algal blooms conversion to bioenergy mediated with dual-functional chitosan," Applied Energy, Elsevier, vol. 327(C).
    18. Moore, Michael R. & Doubek, Jonathan P. & Xu, Hui & Cardinale, Bradley J., 2020. "Hedonic Price Estimates of Lake Water Quality: Valued Attribute, Instrumental Variables, and Ecological-Economic Benefits," Ecological Economics, Elsevier, vol. 176(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:3:p:1984-:d:1043262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.