IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v11y2022i2p8-d728467.html
   My bibliography  Save this article

Application of New Hyperspectral Sensors in the Remote Sensing of Aquatic Ecosystem Health: Exploiting PRISMA and DESIS for Four Italian Lakes

Author

Listed:
  • Mariano Bresciani

    (Institute of Electromagnetic Sensing of the Environment, National Research Council of Italy (CNR-IREA), Via Bassini 15, 20133 Milan, Italy)

  • Claudia Giardino

    (Institute of Electromagnetic Sensing of the Environment, National Research Council of Italy (CNR-IREA), Via Bassini 15, 20133 Milan, Italy)

  • Alice Fabbretto

    (Institute of Electromagnetic Sensing of the Environment, National Research Council of Italy (CNR-IREA), Via Bassini 15, 20133 Milan, Italy)

  • Andrea Pellegrino

    (Institute of Electromagnetic Sensing of the Environment, National Research Council of Italy (CNR-IREA), Via Bassini 15, 20133 Milan, Italy)

  • Salvatore Mangano

    (Institute of Electromagnetic Sensing of the Environment, National Research Council of Italy (CNR-IREA), Via Bassini 15, 20133 Milan, Italy)

  • Gary Free

    (Institute of Electromagnetic Sensing of the Environment, National Research Council of Italy (CNR-IREA), Via Bassini 15, 20133 Milan, Italy)

  • Monica Pinardi

    (Institute of Electromagnetic Sensing of the Environment, National Research Council of Italy (CNR-IREA), Via Bassini 15, 20133 Milan, Italy)

Abstract

The monitoring of water bio-physical parameters and the management of aquatic ecosystems are crucial to cope with the current state of inland water degradation. Not only does water quality monitoring support management decision making, it also provides vital insights to better understand changing structural and functional lake processes. Remote sensing has been widely recognized as an essential integrating technique for water quality monitoring, thanks to its capabilities to utilize both historical archive data for thousands of lakes as well as near-real time observations at multiple scales. To date, most of the applications developed for inland water have been based on multispectral and mid to coarse spatial resolution satellites, while a new generation of spaceborne imaging spectroscopy is now available, and future missions are under development. This review aims to present the exploitation of data gathered from two currently orbiting hyperspectral sensors (i.e., PRISMA and DESIS) to retrieve water quality parameters across different aquatic ecosystems, encompassing deep clear lakes and river dammed reservoirs.

Suggested Citation

  • Mariano Bresciani & Claudia Giardino & Alice Fabbretto & Andrea Pellegrino & Salvatore Mangano & Gary Free & Monica Pinardi, 2022. "Application of New Hyperspectral Sensors in the Remote Sensing of Aquatic Ecosystem Health: Exploiting PRISMA and DESIS for Four Italian Lakes," Resources, MDPI, vol. 11(2), pages 1-17, January.
  • Handle: RePEc:gam:jresou:v:11:y:2022:i:2:p:8-:d:728467
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/11/2/8/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/11/2/8/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Claudia Giardino & Mariano Bresciani & Paolo Villa & Angiolo Martinelli, 2010. "Application of Remote Sensing in Water Resource Management: The Case Study of Lake Trasimeno, Italy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 3885-3899, November.
    2. Jeff C. Ho & Anna M. Michalak & Nima Pahlevan, 2019. "Widespread global increase in intense lake phytoplankton blooms since the 1980s," Nature, Nature, vol. 574(7780), pages 667-670, October.
    3. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pelai, Ricardo & Hagerman, Shannon M. & Kozak, Robert, 2020. "Biotechnologies in agriculture and forestry: Governance insights from a comparative systematic review of barriers and recommendations," Forest Policy and Economics, Elsevier, vol. 117(C).
    2. Rahmani, Javad & Danesh-Yazdi, Mohammad, 2022. "Quantifying the impacts of agricultural alteration and climate change on the water cycle dynamics in a headwater catchment of Lake Urmia Basin," Agricultural Water Management, Elsevier, vol. 270(C).
    3. Badir S. Alsaeed & Dexter V. L. Hunt & Soroosh Sharifi, 2022. "Sustainable Water Resources Management Assessment Frameworks (SWRM-AF) for Arid and Semi-Arid Regions: A Systematic Review," Sustainability, MDPI, vol. 14(22), pages 1-31, November.
    4. Lankford, B. & Makin, Ian & Matthews, N. & McCornick, Peter G. & Noble, A. & Shah, Tushaar, "undated". "A compact to revitalise large-scale irrigation systems using a leadership-partnership-ownership 'Theory of Change'," Papers published in Journals (Open Access) H047459, International Water Management Institute.
    5. Bo Qin & Rong Wang & Xiangdong Yang & Qinghui Zhang & Jianan Zheng, 2023. "Reconstruction and Trends of Total Phosphorus in Shallow Lakes in Eastern China in The Past Century," Sustainability, MDPI, vol. 15(14), pages 1-15, July.
    6. Liu, Jing & Hertel, Thomas & Lammers, Richard & Prusevich, Alexander & Baldos, Uris Lantz & Grogan, Danielle & Frolking, Steve, 2016. "Achieving Sustainable Irrigation Water Withdrawals: Global Impacts on Food Production and Land Use," Conference papers 332691, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    7. Mumuh Muhsin Z. & Nina Herlina & Miftahul Falah & Etty Saringendyanti & Kunto Sofianto & Norlaila Md Zin, 2021. "Impact of Climate Change on Agriculture Sector of Malaysia," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 138-144.
    8. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    9. Ozgul Calicioglu & Alessandro Flammini & Stefania Bracco & Lorenzo Bellù & Ralph Sims, 2019. "The Future Challenges of Food and Agriculture: An Integrated Analysis of Trends and Solutions," Sustainability, MDPI, vol. 11(1), pages 1-21, January.
    10. Giuseppe Lucio Gaeta & Stefano Ghinoi & Matteo Masotti & Francesco Silvestri, 2021. "Economics research and climate change. A Scopus-based bibliometric investigation," SEEDS Working Papers 0321, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Apr 2021.
    11. Jiang, Qiang & Grafton, R. Quentin, 2012. "Economic effects of climate change in the Murray–Darling Basin, Australia," Agricultural Systems, Elsevier, vol. 110(C), pages 10-16.
    12. Ramesh P. Rudra & Balew A. Mekonnen & Rituraj Shukla & Narayan Kumar Shrestha & Pradeep K. Goel & Prasad Daggupati & Asim Biswas, 2020. "Currents Status, Challenges, and Future Directions in Identifying Critical Source Areas for Non-Point Source Pollution in Canadian Conditions," Agriculture, MDPI, vol. 10(10), pages 1-25, October.
    13. Sandra Ricart & Anna Ribas & David Pavón, 2016. "Qualifying irrigation system sustainability by means of stakeholder perceptions and concerns: lessons from the Segarra‐Garrigues Canal, Spain," Natural Resources Forum, Blackwell Publishing, vol. 40(1-2), pages 77-90, February.
    14. Bloem, Jeffrey R., 2023. "Technology Adoption, Agricultural Productivity, and Deforestation," 2023 Annual Meeting, July 23-25, Washington D.C. 335506, Agricultural and Applied Economics Association.
    15. Jiayu Kang & Xuejun Duan & Ruxian Yun, 2023. "The Impact of Urbanization on Food Security: A Case Study of Jiangsu Province," Land, MDPI, vol. 12(9), pages 1-16, August.
    16. Kübra Akyol Özcan, 2023. "Food Price Bubbles: Food Price Indices of Turkey, the FAO, the OECD, and the IMF," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    17. Luis Santos Pereira, 2017. "Water, Agriculture and Food: Challenges and Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2985-2999, August.
    18. Irina Gabriela Cara & Denis Țopa & Ioan Puiu & Gerard Jităreanu, 2022. "Biochar a Promising Strategy for Pesticide-Contaminated Soils," Agriculture, MDPI, vol. 12(10), pages 1-21, September.
    19. Kurup, Suresh A. & Reddy, A. Amarender & Singh, Dharm Raj & Praveen, K.V, 2021. "Risks in Rainfed Agriculture and Adaptation Strategies in India: Profile and Socio-Economic Correlates," 2021 Conference, August 17-31, 2021, Virtual 315127, International Association of Agricultural Economists.
    20. Mu, Qing & Cai, Huanjie & Sun, Shikun & Wen, Shanshan & Xu, Jiatun & Dong, Mengqi & Saddique, Qaisar, 2021. "The physiological response of winter wheat under short-term drought conditions and the sensitivity of different indices to soil water changes," Agricultural Water Management, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:11:y:2022:i:2:p:8-:d:728467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.