IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v487y2024ics0304380023002946.html
   My bibliography  Save this article

Dynamic simulation and projection of land use change using system dynamics model in the Chinese Tianshan mountainous region, central Asia

Author

Listed:
  • Zhang, Zhengrong
  • Li, Xuemei
  • Liu, Xinyu
  • Zhao, Kaixin

Abstract

A critical step in alleviating the contradiction between human activities and land systems is to project and analyze land use change traits in various scenarios to furnish a basis for formulating economic development and ecological conservation strategies. However, few studies have examined land use change using the system dynamics (SD) model and patch-generating land use simulation (PLUS) model in the Chinese Tianshan mountainous region (CTMR) affected by different economic growth patterns and climate change contexts. Therefore, based on the Shared Socioeconomic Pathways and Representative Concentration Pathways (SSPs-RCPs) scenarios, we attempted to construct a regional SD model (RSDM) including population, economic, land, and climate subsystems. Then, the coupled model by combining RSDM and PLUS was employed to simulate and project land use/cover changes (LUCC) in the CTMR at the regional level to explore the spatial distribution of land and its pattern of change in different climate contexts. The SD model is an effective method that can simulate the nonlinear behavior of a complex system and predict its evolution through the interactions and feedback relationships between different influencing factors. The PLUS model is an effective tool that can be used to simulate the evolution of land patches and capture the extent to which the driving factors contribute to LUCC. The relative errors were less than 5%, and the total accuracy of PLUS model was 91.77%. The above results demonstrated the effectiveness of RSDM and PLUS model in modeling LUCC across the CTMR. From 2005 to 2020, there was an expansion trend in the area of forest and construction land as well as in the area of cultivated land, while the grassland area displayed a significant decline. By 2040, the area of unused land, grassland, and water is expected to demonstrate a decreasing trend while other land types increase, with construction land showing the most significant increase of 101.37% under the SSP585 scenario. It is anticipated to expand mainly to cultivated land and grassland around cities. The cultivated land is expected to primarily encroach on the regions of unused land and grassland under the three scenarios, reaching the expansion demand. As opposed to the scenarios of SSP126 and SSP245, the SSP585 scenario distribution of the cultivated land patches will be more compact and denser. The SSP126 and SSP245 scenarios will exhibit similar patterns of future spatial distribution of land. The SSP585 scenario is anticipated to display marked differences. According to the three scenarios, grassland degradation will be severe and require increased grassland protection. The findings can offer novel perspective concepts with regard to future ecological and environmental management, judicious distribution of land resources, and sustainable progression in the CTMR.

Suggested Citation

  • Zhang, Zhengrong & Li, Xuemei & Liu, Xinyu & Zhao, Kaixin, 2024. "Dynamic simulation and projection of land use change using system dynamics model in the Chinese Tianshan mountainous region, central Asia," Ecological Modelling, Elsevier, vol. 487(C).
  • Handle: RePEc:eee:ecomod:v:487:y:2024:i:c:s0304380023002946
    DOI: 10.1016/j.ecolmodel.2023.110564
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380023002946
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2023.110564?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wolfgang Cramer & Joël Guiot & Marianela Fader & Joaquim Garrabou & Jean-Pierre Gattuso & Ana Iglesias & Manfred A. Lange & Piero Lionello & Maria Carmen Llasat & Shlomit Paz & Josep Peñuelas & Maria , 2018. "Climate change and interconnected risks to sustainable development in the Mediterranean," Nature Climate Change, Nature, vol. 8(11), pages 972-980, November.
    2. Eugenia Kalnay & Ming Cai, 2003. "Impact of urbanization and land-use change on climate," Nature, Nature, vol. 423(6939), pages 528-531, May.
    3. Qinglong Ding & Yang Chen & Lingtong Bu & Yanmei Ye, 2021. "Multi-Scenario Analysis of Habitat Quality in the Yellow River Delta by Coupling FLUS with InVEST Model," IJERPH, MDPI, vol. 18(5), pages 1-19, March.
    4. Li, Su-Yuan & Miao, Li-Juan & Jiang, Zhi-Hong & Wang, Guo-Jie & Gnyawali, Kaushal Raj & Zhang, Jing & Zhang, Hui & Fang, Ke & He, Yu & Li, Chun, 2020. "Projected drought conditions in Northwest China with CMIP6 models under combined SSPs and RCPs for 2015–2099," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11(3), pages 210-217.
    5. Tan, Jianbo & Li, Ainong & Lei, Guangbin & Xie, Xinyao, 2019. "A SD-MaxEnt-CA model for simulating the landscape dynamic of natural ecosystem by considering socio-economic and natural impacts," Ecological Modelling, Elsevier, vol. 410(C), pages 1-1.
    6. Huang, Junlong & Tang, Zhuo & Liu, Dianfeng & He, Jianhua, 2020. "Ecological response to urban development in a changing socio-economic and climate context: Policy implications for balancing regional development and habitat conservation," Land Use Policy, Elsevier, vol. 97(C).
    7. Yee, Susan H. & Paulukonis, E. & Simmons, C. & Russell, M. & Fulford, R. & Harwell, L. & Smith, L.M., 2021. "Projecting effects of land use change on human well-being through changes in ecosystem services," Ecological Modelling, Elsevier, vol. 440(C).
    8. Dongbing Li & Yao Chang & Zibibula Simayi & Shengtian Yang, 2022. "Multi-Scenario Dynamic Simulation of Urban Agglomeration Development on the Northern Slope of the Tianshan Mountains in Xinjiang, China, with the Goal of High-Quality Urban Construction," Sustainability, MDPI, vol. 14(11), pages 1-19, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoqing Lin & Chunyan Lu & Kaishan Song & Ying Su & Yifan Lei & Lianxiu Zhong & Yibin Gao, 2020. "Analysis of Coupling Coordination Variance between Urbanization Quality and Eco-Environment Pressure: A Case Study of the West Taiwan Strait Urban Agglomeration, China," Sustainability, MDPI, vol. 12(7), pages 1-19, March.
    2. D. Santillán & L. Garrote & A. Iglesias & V. Sotes, 2020. "Climate change risks and adaptation: new indicators for Mediterranean viticulture," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 881-899, May.
    3. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    4. David Hidalgo García, 2023. "Evaluation and Analysis of the Effectiveness of the Main Mitigation Measures against Surface Urban Heat Islands in Different Local Climate Zones through Remote Sensing," Sustainability, MDPI, vol. 15(13), pages 1-23, July.
    5. Morán-Ordóñez, Alejandra & Ameztegui, Aitor & De Cáceres, Miquel & de-Miguel, Sergio & Lefèvre, François & Brotons, Lluís & Coll, Lluís, 2020. "Future trade-offs and synergies among ecosystem services in Mediterranean forests under global change scenarios," Ecosystem Services, Elsevier, vol. 45(C).
    6. Ahmed, Khalid, 2015. "The sheer scale of China’s urban renewal and CO2 emissions: Multiple structural breaks, long-run relationship and short-run dynamics," MPRA Paper 71035, University Library of Munich, Germany.
    7. Anne A. Gharaibeh & Esra’a M. Al.Zu’bi & Lama B. Abuhassan, 2019. "Amman ( City of Waters ); Policy, Land Use, and Character Changes," Land, MDPI, vol. 8(12), pages 1-25, December.
    8. Dong Chen & Rongrong Liu & Maoxian Zhou, 2023. "Delineation of Urban Growth Boundary Based on Habitat Quality and Carbon Storage: A Case Study of Weiyuan County in Gansu, China," Land, MDPI, vol. 12(5), pages 1-17, May.
    9. Isaac Sarfo & Bi Shuoben & Li Beibei & Solomon Obiri Yeboah Amankwah & Emmanuel Yeboah & John Ernest Koku & Edward Kweku Nunoo & Clement Kwang, 2022. "Spatiotemporal development of land use systems, influences and climate variability in Southwestern Ghana (1970–2020)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9851-9883, August.
    10. Heider, Katharina & Quaranta, Emanuele & García Avilés, José María & Rodriguez Lopez, Juan Miguel & Balbo, Andrea L. & Scheffran, Jürgen, 2022. "Reinventing the wheel – The preservation and potential of traditional water wheels in the terraced irrigated landscapes of the Ricote Valley, southeast Spain," Agricultural Water Management, Elsevier, vol. 259(C).
    11. Vasileios A. Tzanakakis & Andrea G. Capodaglio & Andreas N. Angelakis, 2023. "Insights into Global Water Reuse Opportunities," Sustainability, MDPI, vol. 15(17), pages 1-30, August.
    12. Siakou, M. & Bruggeman, A. & Eliades, M. & Zoumides, C. & Djuma, H. & Kyriacou, M.C. & Emmanouilidou, M.G. & Spyros, A. & Manolopoulou, E. & Moriana, A., 2021. "Effects of deficit irrigation on ‘Koroneiki’ olive tree growth, physiology and olive oil quality at different harvest dates," Agricultural Water Management, Elsevier, vol. 258(C).
    13. Anupama Shantharaju & Md Aminul Islam & Jarrod M. Kath & Shahbaz Mushtaq & Arun Muniyappa & Lila Singh-Peterson, 2024. "Understanding Constraints and Enablers of Climate Risk Management Strategies: Evidence from Smallholder Dairy Farmers in Regional South India," Sustainability, MDPI, vol. 16(5), pages 1-19, February.
    14. Taihao Wang & Huadong Du & Zezheng Zhao & Zeming Zhou & Ana Russo & Hailing Xi & Jiping Zhang & Chengjun Zhou, 2022. "Prediction of the Impact of Meteorological Conditions on Air Quality during the 2022 Beijing Winter Olympics," Sustainability, MDPI, vol. 14(8), pages 1-13, April.
    15. Tian, Guangjin & Jiang, Jing & Yang, Zhifeng & Zhang, Yaoqi, 2011. "The urban growth, size distribution and spatio-temporal dynamic pattern of the Yangtze River Delta megalopolitan region, China," Ecological Modelling, Elsevier, vol. 222(3), pages 865-878.
    16. Camacho, Carmen & Pérez-Barahona, Agustín, 2015. "Land use dynamics and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 96-118.
    17. Andreas N. Angelakis & Mohammad Valipour & Abdelkader T. Ahmed & Vasileios Tzanakakis & Nikolaos V. Paranychianakis & Jens Krasilnikoff & Renato Drusiani & Larry Mays & Fatma El Gohary & Demetris Kout, 2021. "Water Conflicts: From Ancient to Modern Times and in the Future," Sustainability, MDPI, vol. 13(8), pages 1-31, April.
    18. Antonelli, Marta & Basile, Linda & Gagliardi, Francesca & Isernia, Pierangelo, 2022. "The future of the Mediterranean agri-food systems: Trends and perspectives from a Delphi survey," Land Use Policy, Elsevier, vol. 120(C).
    19. Yali Zhong & Shuqing Chen & Haihua Mo & Weiwen Wang & Pengfei Yu & Xuemei Wang & Nima Chuduo & Bian Ba, 2022. "Contribution of urban expansion to surface warming in high-altitude cities of the Tibetan Plateau," Climatic Change, Springer, vol. 175(1), pages 1-22, November.
    20. Aina Maimó-Far & Alexis Tantet & Víctor Homar & Philippe Drobinski, 2020. "Predictable and Unpredictable Climate Variability Impacts on Optimal Renewable Energy Mixes: The Example of Spain," Energies, MDPI, vol. 13(19), pages 1-25, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:487:y:2024:i:c:s0304380023002946. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.