IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v480y2023ics0304380023000546.html
   My bibliography  Save this article

Seasonal forecasting of pest population dynamics based on downscaled SEAS5 forecasts

Author

Listed:
  • Neta, Ayana
  • Levi, Yoav
  • Morin, Efrat
  • Morin, Shai

Abstract

Among the varied environmental factors that influence insect life-history, temperature has a relatively profound effect that can be mathematically estimated with non-linear equations. Thus, many models that aim to predict insect-pest population dynamics use meteorological data as input to descriptive functions that predict the development rate, survival and reproduction of pest populations. In a previous study, we developed a temperature-dependent population dynamics model for the global insect-pest Bemisia tabaci, and verified its accuracy under field conditions. In the current work, which focused on Northern Israel, seasonal meteorological forecasts from the ECMWF SEAS5 coupled model were spatially and temporally stochastically downscaled by a weather generator tool using records from ERA5-Land reanalysis and meteorological stations. The local, hourly temperature time series served as input data to a population dynamics model, creating an ensemble of seasonal population forecasts from which probabilistic predictions could be made already at the beginning of the season (which lasts from March to November). Post-hoc evaluation of the seasonal forecast was done using the observed station temperatures as model input. Comparisons to predictions made using climatologic temperatures found the weather generator-based ones much more accurate in predicting the timing of each insect generation, although there was no difference between the two approaches in predicting the population size. Moreover, the weather generator-based predictions highly matched field observations made by pest inspectors during the growing season of 2021. Taken together, our findings indicate that the developed forecasting tool is capable of providing decision makers with the supporting data required for smart seasonal planning and economical- and environmental-driven optimal management of agricultural systems.

Suggested Citation

  • Neta, Ayana & Levi, Yoav & Morin, Efrat & Morin, Shai, 2023. "Seasonal forecasting of pest population dynamics based on downscaled SEAS5 forecasts," Ecological Modelling, Elsevier, vol. 480(C).
  • Handle: RePEc:eee:ecomod:v:480:y:2023:i:c:s0304380023000546
    DOI: 10.1016/j.ecolmodel.2023.110326
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380023000546
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2023.110326?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blum, Moshe & Nestel, David & Cohen, Yafit & Goldshtein, Eitan & Helman, David & Lensky, Itamar M., 2018. "Predicting Heliothis (Helicoverpa armigera) pest population dynamics with an age-structured insect population model driven by satellite data," Ecological Modelling, Elsevier, vol. 369(C), pages 1-12.
    2. Anton Orlov & Jana Sillmann & Ilaria Vigo, 2020. "Author Correction: Better seasonal forecasts for the renewable energy industry," Nature Energy, Nature, vol. 5(3), pages 271-271, March.
    3. Tonnang, Henri E.Z. & Hervé, Bisseleua D.B. & Biber-Freudenberger, Lisa & Salifu, Daisy & Subramanian, Sevgan & Ngowi, Valentine B. & Guimapi, Ritter Y.A. & Anani, Bruce & Kakmeni, Francois M.M. & Aff, 2017. "Advances in crop insect modelling methods—Towards a whole system approach," Ecological Modelling, Elsevier, vol. 354(C), pages 88-103.
    4. Neta, Ayana & Gafni, Roni & Elias, Hilit & Bar-Shmuel, Nitsan & Shaltiel-Harpaz, Liora & Morin, Efrat & Morin, Shai, 2021. "Decision support for pest management: Using field data for optimizing temperature-dependent population dynamics models," Ecological Modelling, Elsevier, vol. 440(C).
    5. Anton Orlov & Jana Sillmann & Ilaria Vigo, 2020. "Better seasonal forecasts for the renewable energy industry," Nature Energy, Nature, vol. 5(2), pages 108-110, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Muyuan & Yao, Jinfeng & Shen, Yanbo & Yuan, Bin & Simmonds, Ian & Liu, Yunyun, 2023. "Impact of synoptic circulation patterns on renewable energy-related variables over China," Renewable Energy, Elsevier, vol. 215(C).
    2. Liu, Jiarui & Fu, Yuchen, 2023. "Renewable energy forecasting: A self-supervised learning-based transformer variant," Energy, Elsevier, vol. 284(C).
    3. Katopodis, Theodoros & Markantonis, Iason & Vlachogiannis, Diamando & Politi, Nadia & Sfetsos, Athanasios, 2021. "Assessing climate change impacts on wind characteristics in Greece through high resolution regional climate modelling," Renewable Energy, Elsevier, vol. 179(C), pages 427-444.
    4. Prasad, Abhnil Amtesh & Yang, Yuqing & Kay, Merlinde & Menictas, Chris & Bremner, Stephen, 2021. "Synergy of solar photovoltaics-wind-battery systems in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    5. Gao, Sichen & Huang, Guohe & Zhang, Xiaoyue & Han, Dengcheng, 2022. "Small modular reactors enable the transition to a low-carbon power system across Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    6. Thi Ngoc Nguyen & Felix Musgens, 2021. "What drives the accuracy of PV output forecasts?," Papers 2111.02092, arXiv.org.
    7. Zuin, Gianlucca & Buechler, Rob & Sun, Tao & Zanocco, Chad & Galuppo, Francisco & Veloso, Adriano & Rajagopal, Ram, 2023. "Extreme event counterfactual analysis of electricity consumption in Brazil: Historical impacts and future outlook under climate change," Energy, Elsevier, vol. 281(C).
    8. Yu, Bolin & Fang, Debin & Yu, Hongwei & Zhao, Chaoyang, 2021. "Temporal-spatial determinants of renewable energy penetration in electricity production: Evidence from EU countries," Renewable Energy, Elsevier, vol. 180(C), pages 438-451.
    9. Liu, Ying & Lin, Boqiang & Xu, Bin, 2021. "Modeling the impact of energy abundance on economic growth and CO2 emissions by quantile regression: Evidence from China," Energy, Elsevier, vol. 227(C).
    10. Lledó, Llorenç & Ramon, Jaume & Soret, Albert & Doblas-Reyes, Francisco-Javier, 2022. "Seasonal prediction of renewable energy generation in Europe based on four teleconnection indices," Renewable Energy, Elsevier, vol. 186(C), pages 420-430.
    11. Yu, Bolin & Fang, Debin & Meng, Jingxuan, 2021. "Analysis of the generation efficiency of disaggregated renewable energy and its spatial heterogeneity influencing factors: A case study of China," Energy, Elsevier, vol. 234(C).
    12. Augustinus, Benno A. & Blum, Moshe & Citterio, Sandra & Gentili, Rodolfo & Helman, David & Nestel, David & Schaffner, Urs & Müller-Schärer, Heinz & Lensky, Itamar M., 2022. "Ground-truthing predictions of a demographic model driven by land surface temperatures with a weed biocontrol cage experiment," Ecological Modelling, Elsevier, vol. 466(C).
    13. Barton, Madeleine G. & Terblanche, John S. & Sinclair, Brent J., 2019. "Incorporating temperature and precipitation extremes into process-based models of African lepidoptera changes the predicted distribution under climate change," Ecological Modelling, Elsevier, vol. 394(C), pages 53-65.
    14. Yang Yu & Fangrong Ren & Yun Ju & Jingyi Zhang & Xiaoyan Liu, 2024. "Exploring the Role of Digital Transformation and Breakthrough Innovation in Enhanced Performance of Energy Enterprises: Fresh Evidence for Achieving Sustainable Development Goals," Sustainability, MDPI, vol. 16(2), pages 1-22, January.
    15. Neta, Ayana & Gafni, Roni & Elias, Hilit & Bar-Shmuel, Nitsan & Shaltiel-Harpaz, Liora & Morin, Efrat & Morin, Shai, 2021. "Decision support for pest management: Using field data for optimizing temperature-dependent population dynamics models," Ecological Modelling, Elsevier, vol. 440(C).
    16. Pasquali, S. & Soresina, C. & Marchesini, E., 2022. "Mortality estimate driven by population abundance field data in a stage-structured demographic model. The case of Lobesia botrana," Ecological Modelling, Elsevier, vol. 464(C).
    17. Sergey Masyagin & Manuel Mazzara & Giancarlo Succi & Aldo Spallone & Antonio Volpi & Aldo Spallone & Antonio Volpi, 2020. "Covid 19- How Really is the Epidemiological Curve? Epidemiological Curve Growth Rate is Less than One," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 27(5), pages 21056-21062, May.
    18. Pasquali, S. & Soresina, C. & Gilioli, G., 2019. "The effects of fecundity, mortality and distribution of the initial condition in phenological models," Ecological Modelling, Elsevier, vol. 402(C), pages 45-58.
    19. Siti Aisyah Ruslan & Farrah Melissa Muharam & Zed Zulkafli & Dzolkhifli Omar & Muhammad Pilus Zambri, 2019. "Using satellite-measured relative humidity for prediction of Metisa plana’s population in oil palm plantations: A comparative assessment of regression and artificial neural network models," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-15, October.
    20. Tay, Ahmad & Lafont, Frédéric & Balmat, Jean-François & Pessel, Nathalie & Lhoste-Drouineau, Ange, 2021. "Decision support system for Western Flower Thrips management in roses production," Agricultural Systems, Elsevier, vol. 187(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:480:y:2023:i:c:s0304380023000546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.