IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v477y2023ics0304380023000054.html
   My bibliography  Save this article

An aridity threshold model of fire sizes and annual area burned in extensively forested ecoregions of the western USA

Author

Listed:
  • Henne, Paul D.
  • Hawbaker, Todd J.

Abstract

Wildfire occurrence varies among regions and through time due to the long-term impacts of climate on fuel structure and short-term impacts on fuel flammability. Identifying the climatic conditions that trigger extensive fire years at regional scales can enable development of area burned models that are both spatially and temporally robust, which is crucial for understanding the impacts of past and future climate change. We identified region-specific thresholds in fire-season aridity that distinguish years with limited, moderate, and extensive area burned for 11 extensively forested ecoregions in the western United States. We developed a new area burned model using these relationships and demonstrate its application in the Southern Rocky Mountains using climate projections from five global climate models (GCMs) that bracket the range of projected changes in aridity. We used the aridity thresholds to classify each simulation year as having limited, moderate, or extensive area burned and defined fire-size distributions from historical fire records for these categories. We simulated individual fires from a regression relating fire season aridity to the annual number of fires and drew fire sizes from the corresponding fire-size distributions. We project dramatic increases in area burned after 2020 under most GCMs and after 2060 with all GCMs as the frequency of extensive fire years increases. Our adaptable model can readily incorporate new observations (e.g., extreme fire years) to directly address the non-stationarity of fire-climate relationships as climatic conditions diverge from past observations. Our aridity threshold fire model provides a simple yet spatially robust approach to project regional changes in area burned with broad applicability to ecosystem and vegetation simulation models.

Suggested Citation

  • Henne, Paul D. & Hawbaker, Todd J., 2023. "An aridity threshold model of fire sizes and annual area burned in extensively forested ecoregions of the western USA," Ecological Modelling, Elsevier, vol. 477(C).
  • Handle: RePEc:eee:ecomod:v:477:y:2023:i:c:s0304380023000054
    DOI: 10.1016/j.ecolmodel.2023.110277
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380023000054
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2023.110277?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marco Turco & Juan José Rosa-Cánovas & Joaquín Bedia & Sonia Jerez & Juan Pedro Montávez & Maria Carmen Llasat & Antonello Provenzale, 2018. "Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with non-stationary climate-fire models," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    2. Philip E Higuera & John T Abatzoglou & Jeremy S Littell & Penelope Morgan, 2015. "The Changing Strength and Nature of Fire-Climate Relationships in the Northern Rocky Mountains, U.S.A., 1902-2008," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-21, June.
    3. Delignette-Muller, Marie Laure & Dutang, Christophe, 2015. "fitdistrplus: An R Package for Fitting Distributions," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 64(i04).
    4. Marie Laure Delignette-Muller & Christophe Dutang, 2015. "fitdistrplus : An R Package for Fitting Distributions," Post-Print hal-01616147, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schulte, Benedikt & Sachs, Anna-Lena, 2020. "The price-setting newsvendor with Poisson demand," European Journal of Operational Research, Elsevier, vol. 283(1), pages 125-137.
    2. Chen, Shang & He, Liang & Cao, Yinxuan & Wang, Runhong & Wu, Lianhai & Wang, Zhao & Zou, Yufeng & Siddique, Kadambot H.M. & Xiong, Wei & Liu, Manshuang & Feng, Hao & Yu, Qiang & Wang, Xiaoming & He, J, 2021. "Comparisons among four different upscaling strategies for cultivar genetic parameters in rainfed spring wheat phenology simulations with the DSSAT-CERES-Wheat model," Agricultural Water Management, Elsevier, vol. 258(C).
    3. Riva-Palacio, Alan & Leisen, Fabrizio, 2021. "Compound vectors of subordinators and their associated positive Lévy copulas," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    4. Minji Lee & Sun Ju Chung & Youngjo Lee & Sera Park & Jun-Gun Kwon & Dai Jin Kim & Donghwan Lee & Jung-Seok Choi, 2020. "Investigation of Correlated Internet and Smartphone Addiction in Adolescents: Copula Regression Analysis," IJERPH, MDPI, vol. 17(16), pages 1-12, August.
    5. Phillip M. Gurman & Tom Ross & Andreas Kiermeier, 2018. "Quantitative Microbial Risk Assessment of Salmonellosis from the Consumption of Australian Pork: Minced Meat from Retail to Burgers Prepared and Consumed at Home," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2625-2645, December.
    6. Sarra Ghaddab & Manel Kacem & Christian Peretti & Lotfi Belkacem, 2023. "Extreme severity modeling using a GLM-GPD combination: application to an excess of loss reinsurance treaty," Empirical Economics, Springer, vol. 65(3), pages 1105-1127, September.
    7. Kalanka P. Jayalath, 2021. "Fiducial Inference on the Right Censored Birnbaum–Saunders Data via Gibbs Sampler," Stats, MDPI, vol. 4(2), pages 1-15, May.
    8. Zubillaga, María & Skewes, Oscar & Soto, Nicolás & Rabinovich, Jorge E., 2018. "How density-dependence and climate affect guanaco population dynamics," Ecological Modelling, Elsevier, vol. 385(C), pages 189-196.
    9. Nielsen, J.K. & Mueter, F.J. & Adkison, M.D. & Loher, T. & McDermott, S.F. & Seitz, A.C., 2019. "Effect of study area bathymetric heterogeneity on parameterization and performance of a depth-based geolocation model for demersal fishes," Ecological Modelling, Elsevier, vol. 402(C), pages 18-34.
    10. Antonello Maruotti & Antonio Punzo, 2021. "Initialization of Hidden Markov and Semi‐Markov Models: A Critical Evaluation of Several Strategies," International Statistical Review, International Statistical Institute, vol. 89(3), pages 447-480, December.
    11. Taleb-Berrouane, Mohammed & Khan, Faisal & Amyotte, Paul, 2020. "Bayesian Stochastic Petri Nets (BSPN) - A new modelling tool for dynamic safety and reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    12. Fezzi, Carlo & Menapace, Luisa & Raffaelli, Roberta, 2021. "Estimating risk preferences integrating insurance choices with subjective beliefs," European Economic Review, Elsevier, vol. 135(C).
    13. Pongnumkul, Suchit & Motohashi, Kazuyuki, 2018. "A bipartite fitness model for online music streaming services," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1125-1137.
    14. Gzara, Fatma & Elhedhli, Samir & Yildiz, Burak C., 2020. "The Pallet Loading Problem: Three-dimensional bin packing with practical constraints," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1062-1074.
    15. Lehtomaa, Jaakko & Resnick, Sidney I., 2020. "Asymptotic independence and support detection techniques for heavy-tailed multivariate data," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 262-277.
    16. Xing Zheng Wu & Chen Zhe Ma & Rui-kai Wang & Wei Chao Li, 2023. "Development of environmental contours from rainfall intensity and duration data for slopes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 1001-1027, March.
    17. Nascimento, Marcela C. & Husson, Berengere & Guillet, Lilia & Pedersen, Torstein, 2023. "Modelling the spatial shifts of functional groups in the Barents Sea using a climate-driven spatial food web model," Ecological Modelling, Elsevier, vol. 481(C).
    18. Yasin Khadem Charvadeh & Grace Y. Yi & Yuan Bian & Wenqing He, 2022. "Is 14-Days a Sensible Quarantine Length for COVID-19? Examinations of Some Associated Issues with a Case Study of COVID-19 Incubation Times," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(1), pages 175-190, April.
    19. Andrea Ferrantelli & Helena Kuivjõgi & Jarek Kurnitski & Martin Thalfeldt, 2020. "Office Building Tenants’ Electricity Use Model for Building Performance Simulations," Energies, MDPI, vol. 13(21), pages 1-19, October.
    20. Oluwatobi Aiyelokun & Quoc Bao Pham & Oluwafunbi Aiyelokun & Anurag Malik & S. Adarsh & Babak Mohammadi & Nguyen Thi Thuy Linh & Mohammad Zakwan, 2021. "Credibility of design rainfall estimates for drainage infrastructures: extent of disregard in Nigeria and proposed framework for practice," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1557-1588, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:477:y:2023:i:c:s0304380023000054. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.