IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v223y2011i1p20-31.html
   My bibliography  Save this article

A preliminary assessment of socio-ecological metabolism for three neighborhoods within a rust belt urban ecosystem

Author

Listed:
  • Hall, Myrna H.P.

Abstract

Rust belt cities of the northeastern United States are plagued by flat or declining economies and the accompanying social fallout from lack of employment. Advocates of green fuels, green infrastructure and green jobs have proposed these nature-based technologies as means to revitalize the economies of cities. Before making public and private investment a baseline analysis of the relative magnitude of existing energy production and energy respiration at the neighborhood scale is useful in order to understand what the potential for green infrastructure might be. Because the urban canopy and other green infrastructure can enhance urban socio-ecological metabolism, we measured the flows of natural energy produced (P) by the urban forest versus the industrial or fossil energy currently consumed or respired (R) in three economically and demographically distinct neighborhoods of a typical rust-belt city, Syracuse, NY. Our objectives were to (1) understand the potential for green energy to replace fossil fuels in general, (2) assess the degree to which different socio-demographic communities are receiving the ecosystem benefits of existing urban “green” infrastructure (i.e. forest primary production), and (3) identify where local (in-city) biotic energy resources could be enhanced or fossil fuel consumption altered to improve overall urban socio-ecological metabolism. We found that (1) the fossil energy consumed in all three neighborhoods was 200–700 times higher than the biotic “green” energy produced; (2) that to produce this much energy from willow biomass grown in the region would require at least between 0.3 and 0.7ha of bio-energy production per person depending on affluence, density of living, transportation mix and home fuel mix; (3) that although the more affluent neighborhood used, per residence and per person, almost twice as much energy as that of the downtown more densely settled and poorer neighborhood, its R:P ratio was still the lowest due to the high primary productivity of its neighborhood tree canopy. As a first assessment our findings identify several opportunities for enhancement of the socio-ecological metabolism of these neighborhoods, and the city at large, through conversion of heating units in poorer neighborhoods away from expensive electricity, and toward tree planting, solar installations, and per capita energy use reductions.

Suggested Citation

  • Hall, Myrna H.P., 2011. "A preliminary assessment of socio-ecological metabolism for three neighborhoods within a rust belt urban ecosystem," Ecological Modelling, Elsevier, vol. 223(1), pages 20-31.
  • Handle: RePEc:eee:ecomod:v:223:y:2011:i:1:p:20-31
    DOI: 10.1016/j.ecolmodel.2011.08.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380011004364
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2011.08.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James D. Hamilton, 2009. "Causes and Consequences of the Oil Shock of 2007-08," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 40(1 (Spring), pages 215-283.
    2. Zhang, Yan & Yang, Zhifeng & Yu, Xiangyi, 2009. "Evaluation of urban metabolism based on emergy synthesis: A case study for Beijing (China)," Ecological Modelling, Elsevier, vol. 220(13), pages 1690-1696.
    3. Pachauri, Shonali & Jiang, Leiwen, 2008. "The household energy transition in India and China," Energy Policy, Elsevier, vol. 36(11), pages 4022-4035, November.
    4. Christopher Kennedy & John Cuddihy & Joshua Engel‐Yan, 2007. "The Changing Metabolism of Cities," Journal of Industrial Ecology, Yale University, vol. 11(2), pages 43-59, April.
    5. Charles A. S. Hall & Stephen Balogh & David J.R. Murphy, 2009. "What is the Minimum EROI that a Sustainable Society Must Have?," Energies, MDPI, vol. 2(1), pages 1-23, January.
    6. Cohen, Claude & Lenzen, Manfred & Schaeffer, Roberto, 2005. "Energy requirements of households in Brazil," Energy Policy, Elsevier, vol. 33(4), pages 555-562, March.
    7. Charles, Michael B. & Ryan, Rachel & Ryan, Neal & Oloruntoba, Richard, 2007. "Public policy and biofuels: The way forward?," Energy Policy, Elsevier, vol. 35(11), pages 5737-5746, November.
    8. Ashok Kumar (ed.), 2010. "Air Quality," Books, IntechOpen, number 787, January-J.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan, Zhiyuan & Zheng, Xinqi & Lv, Lina & Xue, Chunlu, 2014. "From design to digital model: A quantitative analysis approach to Garden Cities theory," Ecological Modelling, Elsevier, vol. 289(C), pages 26-35.
    2. Jørgensen, Sven E. & Nielsen, Søren Nors & Fath, Brian D., 2016. "Recent progress in systems ecology," Ecological Modelling, Elsevier, vol. 319(C), pages 112-118.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yan & Liu, Hong & Fath, Brian D., 2014. "Synergism analysis of an urban metabolic system: Model development and a case study for Beijing, China," Ecological Modelling, Elsevier, vol. 272(C), pages 188-197.
    2. Lambert, Jessica G. & Hall, Charles A.S. & Balogh, Stephen & Gupta, Ajay & Arnold, Michelle, 2014. "Energy, EROI and quality of life," Energy Policy, Elsevier, vol. 64(C), pages 153-167.
    3. Zhang, Yan & Liu, Hong & Chen, Bin, 2013. "Comprehensive evaluation of the structural characteristics of an urban metabolic system: Model development and a case study of Beijing," Ecological Modelling, Elsevier, vol. 252(C), pages 106-113.
    4. Jackson, Andrew & Jackson, Tim, 2021. "Modelling energy transition risk: The impact of declining energy return on investment (EROI)," Ecological Economics, Elsevier, vol. 185(C).
    5. Kennedy, Christopher & Steinberger, Julia & Gasson, Barrie & Hansen, Yvonne & Hillman, Timothy & Havránek, Miroslav & Pataki, Diane & Phdungsilp, Aumnad & Ramaswami, Anu & Mendez, Gara Villalba, 2010. "Methodology for inventorying greenhouse gas emissions from global cities," Energy Policy, Elsevier, vol. 38(9), pages 4828-4837, September.
    6. Rye, Craig D. & Jackson, Tim, 2018. "A review of EROEI-dynamics energy-transition models," Energy Policy, Elsevier, vol. 122(C), pages 260-272.
    7. Golley, Jane & Meng, Xin, 2012. "Income inequality and carbon dioxide emissions: The case of Chinese urban households," Energy Economics, Elsevier, vol. 34(6), pages 1864-1872.
    8. Chiu, Hao-Wei & Lee, Ying-Chieh & Huang, Shu-Li & Hsieh, Ya-Cheng, 2019. "How does peri-urbanization teleconnect remote areas? An emergy approach," Ecological Modelling, Elsevier, vol. 403(C), pages 57-69.
    9. Antonio Barragán-Escandón & Julio Terrados-Cepeda & Esteban Zalamea-León, 2017. "The Role of Renewable Energy in the Promotion of Circular Urban Metabolism," Sustainability, MDPI, vol. 9(12), pages 1-29, December.
    10. Chen, Xuejun & Lu, Hailong & Gu, Lijuan & Shang, Shilong & Zhang, Yi & Huang, Xin & Zhang, Le, 2022. "Preliminary evaluation of the economic potential of the technologies for gas hydrate exploitation," Energy, Elsevier, vol. 243(C).
    11. Sovacool, Benjamin K. & Brown, Marilyn A., 2010. "Twelve metropolitan carbon footprints: A preliminary comparative global assessment," Energy Policy, Elsevier, vol. 38(9), pages 4856-4869, September.
    12. Fantazzini, Dean & Höök, Mikael & Angelantoni, André, 2011. "Global oil risks in the early 21st century," Energy Policy, Elsevier, vol. 39(12), pages 7865-7873.
    13. Baynes, Timothy & Lenzen, Manfred & Steinberger, Julia K. & Bai, Xuemei, 2011. "Comparison of household consumption and regional production approaches to assess urban energy use and implications for policy," Energy Policy, Elsevier, vol. 39(11), pages 7298-7309.
    14. Tverberg, Gail E., 2012. "Oil supply limits and the continuing financial crisis," Energy, Elsevier, vol. 37(1), pages 27-34.
    15. Zilong Zhang & Xingpeng Chen & Peter Heck, 2014. "Emergy-Based Regional Socio-Economic Metabolism Analysis: An Application of Data Envelopment Analysis and Decomposition Analysis," Sustainability, MDPI, vol. 6(12), pages 1-21, November.
    16. Carey W. King & John P. Maxwell & Alyssa Donovan, 2015. "Comparing World Economic and Net Energy Metrics, Part 2: Total Economy Expenditure Perspective," Energies, MDPI, vol. 8(11), pages 1-22, November.
    17. Yang, Dewei & Kao, William Tze Ming & Zhang, Guoqin & Zhang, Nanyang, 2014. "Evaluating spatiotemporal differences and sustainability of Xiamen urban metabolism using emergy synthesis," Ecological Modelling, Elsevier, vol. 272(C), pages 40-48.
    18. Zhanqi Wang & Ji Chai & Bingqing Li, 2016. "The Impacts of Land Use Change on Residents’ Living Based on Urban Metabolism: A Case Study in Yangzhou City of Jiangsu Province, China," Sustainability, MDPI, vol. 8(10), pages 1-17, October.
    19. Cornelis Leeuwen & Jos Frijns & Annemarie Wezel & Frans Ven, 2012. "City Blueprints: 24 Indicators to Assess the Sustainability of the Urban Water Cycle," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2177-2197, June.
    20. Lee, Chi-Chuan & Lee, Chien-Chiang & Ning, Shao-Lin, 2017. "Dynamic relationship of oil price shocks and country risks," Energy Economics, Elsevier, vol. 66(C), pages 571-581.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:223:y:2011:i:1:p:20-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.