IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v403y2019icp57-69.html
   My bibliography  Save this article

How does peri-urbanization teleconnect remote areas? An emergy approach

Author

Listed:
  • Chiu, Hao-Wei
  • Lee, Ying-Chieh
  • Huang, Shu-Li
  • Hsieh, Ya-Cheng

Abstract

Urbanization not only causes environmental changes in metropolitan regions but also influences the ecological and socioeconomic changes of distant land areas due to increasing demands on resource use and waste emissions. Previous studies on the assessment of urban systems have focused on the city or metropolitan areas under study. There is a need to incorporate urban land teleconnections to investigate the relationship between a city and distant land areas during the process of urbanization. This paper analyzes the teleconnection of the energy and material flows associated with Taipei’s peri-urbanization and remote areas in Taiwan. The cross-scale emergy synthesis of Taipei and Taiwan was examined first to investigate the relationships of the material and energy flows between Taipei and Taiwan. The exploitation of non-renewable resources in Taiwan during the 1990s was driven mainly by the construction and development taking place in Taipei. Furthermore, compared with Taiwan, the Taipei area relies heavily on external resources. The results of the emergy evaluation of materials flows in Taipei indicated that 85% of the construction materials used were imported from other remote areas during the past 30 years. The use of construction materials in Taipei had a higher intensity in the city center during 1982–1992 and in the peri-urban area during 2002−2014. The results of the emergy synthesis indicated that urban land teleconnections exist between peri-urban areas of Taipei and other distant areas in Taiwan.

Suggested Citation

  • Chiu, Hao-Wei & Lee, Ying-Chieh & Huang, Shu-Li & Hsieh, Ya-Cheng, 2019. "How does peri-urbanization teleconnect remote areas? An emergy approach," Ecological Modelling, Elsevier, vol. 403(C), pages 57-69.
  • Handle: RePEc:eee:ecomod:v:403:y:2019:i:c:p:57-69
    DOI: 10.1016/j.ecolmodel.2019.03.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380019301012
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2019.03.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jillian M. Deines & Xiao Liu & Jianguo Liu, 2016. "Telecoupling in urban water systems: an examination of Beijing’s imported water supply," Water International, Taylor & Francis Journals, vol. 41(2), pages 251-270, March.
    2. Viglia, S. & Matthews, K.B. & Miller, D.G. & Wardell-Johnson, D. & Rivington, M. & Ulgiati, S., 2017. "The social metabolism of Scotland: An environmental perspective," Energy Policy, Elsevier, vol. 100(C), pages 304-313.
    3. Shu‐Li Huang & Chia‐Wen Chen, 2009. "Urbanization and Socioeconomic Metabolism in Taipei," Journal of Industrial Ecology, Yale University, vol. 13(1), pages 75-93, February.
    4. Zhang, Yan & Yang, Zhifeng & Yu, Xiangyi, 2009. "Evaluation of urban metabolism based on emergy synthesis: A case study for Beijing (China)," Ecological Modelling, Elsevier, vol. 220(13), pages 1690-1696.
    5. E. Gunilla A. Olsson & Eva Kerselaers & Lone Søderkvist Kristensen & Jørgen Primdahl & Elke Rogge & Anders Wästfelt, 2016. "Peri-Urban Food Production and Its Relation to Urban Resilience," Sustainability, MDPI, vol. 8(12), pages 1-21, December.
    6. Zhang, Yan & Yang, Zhifeng & Liu, Gengyuan & Yu, Xiangyi, 2011. "Emergy analysis of the urban metabolism of Beijing," Ecological Modelling, Elsevier, vol. 222(14), pages 2377-2384.
    7. Christopher Kennedy & John Cuddihy & Joshua Engel‐Yan, 2007. "The Changing Metabolism of Cities," Journal of Industrial Ecology, Yale University, vol. 11(2), pages 43-59, April.
    8. Lee, Jae Min & Braham, William W., 2017. "Building emergy analysis of Manhattan: Density parameters for high-density and high-rise developments," Ecological Modelling, Elsevier, vol. 363(C), pages 157-171.
    9. Susan E. Lee & Andrew D. Quinn & Chris D.F. Rogers, 2016. "Advancing City Sustainability via Its Systems of Flows: The Urban Metabolism of Birmingham and Its Hinterland," Sustainability, MDPI, vol. 8(3), pages 1-24, March.
    10. Yang Yu & Kuishuang Feng & Klaus Hubacek & Laixiang Sun, 2016. "Global Implications of China's Future Food Consumption," Journal of Industrial Ecology, Yale University, vol. 20(3), pages 593-602, June.
    11. Brown, Mark T. & Campbell, Daniel E. & De Vilbiss, Christopher & Ulgiati, Sergio, 2016. "The geobiosphere emergy baseline: A synthesis," Ecological Modelling, Elsevier, vol. 339(C), pages 92-95.
    12. Shu-Li Huang, 1998. "Ecological Energetics, Hierarchy, and Urban Form: A System Modelling Approach to the Evolution of Urban Zonation," Environment and Planning B, , vol. 25(3), pages 391-410, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mortoja, Md. Golam & Yigitcanlar, Tan & Mayere, Severine, 2020. "What is the most suitable methodological approach to demarcate peri-urban areas? A systematic review of the literature," Land Use Policy, Elsevier, vol. 95(C).
    2. Lee, Ying-Chieh & Liao, Pei-Ting, 2021. "The effect of tourism on teleconnected ecosystem services and urban sustainability: An emergy approach," Ecological Modelling, Elsevier, vol. 439(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yan & Liu, Hong & Fath, Brian D., 2014. "Synergism analysis of an urban metabolic system: Model development and a case study for Beijing, China," Ecological Modelling, Elsevier, vol. 272(C), pages 188-197.
    2. Zilong Zhang & Xingpeng Chen & Peter Heck, 2014. "Emergy-Based Regional Socio-Economic Metabolism Analysis: An Application of Data Envelopment Analysis and Decomposition Analysis," Sustainability, MDPI, vol. 6(12), pages 1-21, November.
    3. Zhanqi Wang & Ji Chai & Bingqing Li, 2016. "The Impacts of Land Use Change on Residents’ Living Based on Urban Metabolism: A Case Study in Yangzhou City of Jiangsu Province, China," Sustainability, MDPI, vol. 8(10), pages 1-17, October.
    4. Wang, Xueqi & Liu, Gengyuan & Coscieme, Luca & Giannetti, Biagio F. & Hao, Yan & Zhang, Yan & Brown, Mark T., 2019. "Study on the emergy-based thermodynamic geography of the Jing-Jin-Ji region: Combined multivariate statistical data with DMSP-OLS nighttime lights data," Ecological Modelling, Elsevier, vol. 397(C), pages 1-15.
    5. Xiaoyue Wang & Shuyao Wu & Shuangcheng Li, 2017. "Urban Metabolism of Three Cities in Jing-Jin-Ji Urban Agglomeration, China: Using the MuSIASEM Approach," Sustainability, MDPI, vol. 9(8), pages 1-21, August.
    6. Zhang, Yan & Liu, Hong & Chen, Bin, 2013. "Comprehensive evaluation of the structural characteristics of an urban metabolic system: Model development and a case study of Beijing," Ecological Modelling, Elsevier, vol. 252(C), pages 106-113.
    7. Heba Allah Essam E. Khalil & Ahmad Al‐Ahwal, 2021. "Reunderstanding Cairo through urban metabolism: Formal versus informal districts resource flow performance in fast urbanizing cities," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 176-192, February.
    8. Antonio Barragán-Escandón & Julio Terrados-Cepeda & Esteban Zalamea-León, 2017. "The Role of Renewable Energy in the Promotion of Circular Urban Metabolism," Sustainability, MDPI, vol. 9(12), pages 1-29, December.
    9. Fang, Wei & An, Haizhong & Li, Huajiao & Gao, Xiangyun & Sun, Xiaoqi & Zhong, Weiqiong, 2017. "Accessing on the sustainability of urban ecological-economic systems by means of a coupled emergy and system dynamics model: A case study of Beijing," Energy Policy, Elsevier, vol. 100(C), pages 326-337.
    10. Meirong Su & Yan Zhang & Gengyuan Liu & Linyu Xu & Lixiao Zhang & Zhifeng Yang, 2013. "Urban Ecosystem Health Assessment: Perspectives and Chinese Practice," IJERPH, MDPI, vol. 10(11), pages 1-12, November.
    11. Liao, Wenjie & Heijungs, Reinout & Huppes, Gjalt, 2012. "Thermodynamic analysis of human–environment systems: A review focused on industrial ecology," Ecological Modelling, Elsevier, vol. 228(C), pages 76-88.
    12. Qing Huang & Xinqi Zheng & Yecui Hu, 2015. "Analysis of Land-Use Emergy Indicators Based on Urban Metabolism: A Case Study for Beijing," Sustainability, MDPI, vol. 7(6), pages 1-19, June.
    13. Jiao Huang & Ze Liang & Shuyao Wu & Shuangcheng Li, 2019. "Grain Self-Sufficiency Capacity in China’s Metropolitan Areas under Rapid Urbanization: Trends and Regional Differences from 1990 to 2015," Sustainability, MDPI, vol. 11(9), pages 1-23, April.
    14. Yang, Dewei & Kao, William Tze Ming & Zhang, Guoqin & Zhang, Nanyang, 2014. "Evaluating spatiotemporal differences and sustainability of Xiamen urban metabolism using emergy synthesis," Ecological Modelling, Elsevier, vol. 272(C), pages 40-48.
    15. Davide Longato & Giulia Lucertini & Michele Dalla Fontana & Francesco Musco, 2019. "Including Urban Metabolism Principles in Decision-Making: A Methodology for Planning Waste and Resource Management," Sustainability, MDPI, vol. 11(7), pages 1-19, April.
    16. Galychyn, Oleksandr, 2022. "Towards sustainable cities: A multi-criteria assessment framework for studying urban metabolism," MPRA Paper 121584, University Library of Munich, Germany, revised 11 May 2022.
    17. Li, Dezhi & Du, Bingzhen & Zhu, Jin, 2021. "Evaluating old community renewal based on emergy analysis: A case study of Nanjing," Ecological Modelling, Elsevier, vol. 449(C).
    18. Thomas Elliot & Javier Babí Almenar & Samuel Niza & Vânia Proença & Benedetto Rugani, 2019. "Pathways to Modelling Ecosystem Services within an Urban Metabolism Framework," Sustainability, MDPI, vol. 11(10), pages 1-22, May.
    19. Qu, Lili & Zhang, Tianzhu & Liang, Sai, 2013. "Waste management of urban agglomeration on a life cycle basis," Resources, Conservation & Recycling, Elsevier, vol. 78(C), pages 47-53.
    20. Hall, Myrna H.P., 2011. "A preliminary assessment of socio-ecological metabolism for three neighborhoods within a rust belt urban ecosystem," Ecological Modelling, Elsevier, vol. 223(1), pages 20-31.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:403:y:2019:i:c:p:57-69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.