IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v179y2019icp1-4.html
   My bibliography  Save this article

Coalitional surplus desirability and the equal surplus division value

Author

Listed:
  • Hu, Xun-Feng

Abstract

In this paper, we propose axiomatic results with two variations of the recent coalitional desirability axiom (Beal et al., 2019), respectively named as coalitional surplus desirability and average coalitional surplus desirability. Particularly, we show that while the first variation is incompatible with the well-known efficiency axiom, the second variation is characteristic for the equal surplus division value, together with the well-known efficiency and additivity axioms.

Suggested Citation

  • Hu, Xun-Feng, 2019. "Coalitional surplus desirability and the equal surplus division value," Economics Letters, Elsevier, vol. 179(C), pages 1-4.
  • Handle: RePEc:eee:ecolet:v:179:y:2019:i:c:p:1-4
    DOI: 10.1016/j.econlet.2019.03.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176519300758
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2019.03.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Xun-Feng & Li, Deng-Feng & Xu, Gen-Jiu, 2018. "Fair distribution of surplus and efficient extensions of the Myerson value," Economics Letters, Elsevier, vol. 165(C), pages 1-5.
    2. van den Brink, René & Khmelnitskaya, Anna & van der Laan, Gerard, 2012. "An efficient and fair solution for communication graph games," Economics Letters, Elsevier, vol. 117(3), pages 786-789.
    3. René Brink & Yukihiko Funaki, 2009. "Axiomatizations of a Class of Equal Surplus Sharing Solutions for TU-Games," Theory and Decision, Springer, vol. 67(3), pages 303-340, September.
    4. Casajus, André & Huettner, Frank, 2014. "Null, nullifying, or dummifying players: The difference between the Shapley value, the equal division value, and the equal surplus division value," Economics Letters, Elsevier, vol. 122(2), pages 167-169.
    5. René Brink & Youngsub Chun & Yukihiko Funaki & Boram Park, 2016. "Consistency, population solidarity, and egalitarian solutions for TU-games," Theory and Decision, Springer, vol. 81(3), pages 427-447, September.
    6. Thomson, William, 2012. "On The Axiomatics Of Resource Allocation: Interpreting The Consistency Principle," Economics and Philosophy, Cambridge University Press, vol. 28(3), pages 385-421, November.
    7. Sylvain Béal & Eric Rémila & Philippe Solal, 2019. "Coalitional desirability and the equal division value," Theory and Decision, Springer, vol. 86(1), pages 95-106, February.
    8. Roger B. Myerson, 1977. "Graphs and Cooperation in Games," Mathematics of Operations Research, INFORMS, vol. 2(3), pages 225-229, August.
    9. Genjiu Xu & Han Dai & Haobin Shi, 2015. "Axiomatizations and a Noncooperative Interpretation of the α-CIS Value," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 32(05), pages 1-15.
    10. René Brink & Yukihiko Funaki & Yuan Ju, 2013. "Reconciling marginalism with egalitarianism: consistency, monotonicity, and implementation of egalitarian Shapley values," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 40(3), pages 693-714, March.
    11. van den Brink, Rene, 2007. "Null or nullifying players: The difference between the Shapley value and equal division solutions," Journal of Economic Theory, Elsevier, vol. 136(1), pages 767-775, September.
    12. Marcin Malawski, 2013. "“Procedural” values for cooperative games," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(1), pages 305-324, February.
    13. AUMANN, Robert J. & DREZE, Jacques H., 1974. "Cooperative games with coalition structures," LIDAM Reprints CORE 217, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erfang Shan & Zhiqiang Yu & Wenrong Lyu, 2023. "Union-wise egalitarian solutions in cooperative games with a coalition structure," 4OR, Springer, vol. 21(3), pages 533-545, September.
    2. Zheng, Xiao-Xue & Li, Deng-Feng & Liu, Zhi & Jia, Fu & Lev, Benjamin, 2021. "Willingness-to-cede behaviour in sustainable supply chain coordination," International Journal of Production Economics, Elsevier, vol. 240(C).
    3. Sylvain Béal & Florian Navarro, 2020. "Necessary versus equal players in axiomatic studies," Post-Print hal-03252179, HAL.
    4. Xun-Feng Hu & Deng-Feng Li, 2021. "The Equal Surplus Division Value for Cooperative Games with a Level Structure," Group Decision and Negotiation, Springer, vol. 30(6), pages 1315-1341, December.
    5. Takumi Kongo, 2020. "Similarities in axiomatizations: equal surplus division value and first-price auctions," Review of Economic Design, Springer;Society for Economic Design, vol. 24(3), pages 199-213, December.
    6. Liu, Jia-Cai & Sheu, Jiuh-Biing & Li, Deng-Feng & Dai, Yong-Wu, 2021. "Collaborative profit allocation schemes for logistics enterprise coalitions with incomplete information," Omega, Elsevier, vol. 101(C).
    7. Koji Yokote & Takumi Kongo & Yukihiko Funaki, 2021. "Redistribution to the less productive: parallel characterizations of the egalitarian Shapley and consensus values," Theory and Decision, Springer, vol. 91(1), pages 81-98, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koji Yokote & Takumi Kongo & Yukihiko Funaki, 2021. "Redistribution to the less productive: parallel characterizations of the egalitarian Shapley and consensus values," Theory and Decision, Springer, vol. 91(1), pages 81-98, July.
    2. J. M. Alonso-Meijide & J. Costa & I. García-Jurado & J. C. Gonçalves-Dosantos, 2020. "On egalitarian values for cooperative games with a priori unions," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 672-688, October.
    3. Xun-Feng Hu & Deng-Feng Li, 2021. "The Equal Surplus Division Value for Cooperative Games with a Level Structure," Group Decision and Negotiation, Springer, vol. 30(6), pages 1315-1341, December.
    4. Koji Yokote & Takumi Kongo & Yukihiko Funaki, 2019. "Relationally equal treatment of equals and affine combinations of values for TU games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 53(2), pages 197-212, August.
    5. Sylvain Béal & Eric Rémila & Philippe Solal, 2019. "Coalitional desirability and the equal division value," Theory and Decision, Springer, vol. 86(1), pages 95-106, February.
    6. Zhang, Li & Xu, Genjiu & Sun, Hao & Li, Wenzhong, 2023. "Players’ dummification and the dummified egalitarian non-separable contribution value," Economics Letters, Elsevier, vol. 226(C).
    7. Béal, Sylvain & Casajus, André & Huettner, Frank & Rémila, Eric & Solal, Philippe, 2014. "Solidarity within a fixed community," Economics Letters, Elsevier, vol. 125(3), pages 440-443.
    8. Pedro Calleja & Francesc Llerena, 2019. "Path monotonicity, consistency and axiomatizations of some weighted solutions," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(1), pages 287-310, March.
    9. Sylvain Béal & Florian Navarro, 2020. "Necessary versus equal players in axiomatic studies," Working Papers 2020-01, CRESE.
    10. Sylvain Béal & Eric Rémila & Philippe Solal, 2015. "Discounted Tree Solutions," Working Papers hal-01377923, HAL.
    11. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2015. "Preserving or removing special players: What keeps your payoff unchanged in TU-games?," Mathematical Social Sciences, Elsevier, vol. 73(C), pages 23-31.
    12. Sylvain Ferrières, 2017. "Nullified equal loss property and equal division values," Theory and Decision, Springer, vol. 83(3), pages 385-406, October.
    13. Wenna Wang & Hao Sun & Rene (J.R.) van den Brink & Genjiu Xu, 2018. "The family of ideal values for cooperative games," Tinbergen Institute Discussion Papers 18-002/II, Tinbergen Institute.
    14. Zhengxing Zou & René Brink & Youngsub Chun & Yukihiko Funaki, 2021. "Axiomatizations of the proportional division value," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 57(1), pages 35-62, July.
    15. Rong Zou & Genjiu Xu & Dongshuang Hou, 2023. "Efficient extensions of the Myerson value based on endogenous claims from players," Annals of Operations Research, Springer, vol. 323(1), pages 287-300, April.
    16. Zhengxing Zou & Rene van den Brink, 2020. "Sharing the Surplus and Proportional Values," Tinbergen Institute Discussion Papers 20-014/II, Tinbergen Institute.
    17. Abe, Takaaki & Nakada, Satoshi, 2023. "The in-group egalitarian Owen values," Games and Economic Behavior, Elsevier, vol. 142(C), pages 1-16.
    18. Calleja, Pere & Llerena Garrés, Francesc, 2016. "Consistency distinguishes the (weighted) Shapley value, the (weighted) surplus division value and the prenucleolus," Working Papers 2072/266577, Universitat Rovira i Virgili, Department of Economics.
    19. Sylvain Béal & André Casajus & Frank Huettner & Eric Rémila & Philippe Solal, 2016. "Characterizations of weighted and equal division values," Theory and Decision, Springer, vol. 80(4), pages 649-667, April.
    20. Takumi Kongo, 2018. "Effects of Players’ Nullification and Equal (Surplus) Division Values," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-14, March.

    More about this item

    Keywords

    TU game; Equal division value; Equal surplus division value; Coalitional desirability; Coalitional surplus desirability;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • D63 - Microeconomics - - Welfare Economics - - - Equity, Justice, Inequality, and Other Normative Criteria and Measurement

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:179:y:2019:i:c:p:1-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.