IDEAS home Printed from
   My bibliography  Save this article

Structural estimation of continuous choice models: Evaluating the EGM and MPEC


  • Jørgensen, Thomas H.


In this paper, I evaluate the performance of two recently proposed approaches to solving and estimating structural models: The Endogenous Grid Method (EGM) and Mathematical Programming with Equilibrium Constraints (MPEC). Monte Carlo simulations confirm that both the EGM and MPEC have advantages relative to standard methods. The EGM proved particularly robust, fast and straightforward to implement. Approaches trying to avoid solving the model numerically, therefore, seem to be dominated by these approaches.

Suggested Citation

  • Jørgensen, Thomas H., 2013. "Structural estimation of continuous choice models: Evaluating the EGM and MPEC," Economics Letters, Elsevier, vol. 119(3), pages 287-290.
  • Handle: RePEc:eee:ecolet:v:119:y:2013:i:3:p:287-290 DOI: 10.1016/j.econlet.2013.02.027

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Giulio Fella, 2011. "A Generalized Endogenous Grid Method for Non-concave Problems," Working Papers 677, Queen Mary University of London, School of Economics and Finance.
    2. Rust, John, 1987. "Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold Zurcher," Econometrica, Econometric Society, vol. 55(5), pages 999-1033, September.
    3. Deaton, Angus, 1991. "Saving and Liquidity Constraints," Econometrica, Econometric Society, vol. 59(5), pages 1221-1248, September.
    4. Che‐Lin Su & Kenneth L. Judd, 2012. "Constrained Optimization Approaches to Estimation of Structural Models," Econometrica, Econometric Society, vol. 80(5), pages 2213-2230, September.
    5. Sule Alan & Martin Browning, 2003. "Estimating Intertemporal Allocation Parameters using Simulated Residual Estimation," CAM Working Papers 2003-03, University of Copenhagen. Department of Economics. Centre for Applied Microeconometrics.
    6. Carroll, Christopher D., 2006. "The method of endogenous gridpoints for solving dynamic stochastic optimization problems," Economics Letters, Elsevier, vol. 91(3), pages 312-320, June.
    7. Sule Alan & Orazio Attanasio & Martin Browning, 2009. "Estimating Euler equations with noisy data: two exact GMM estimators," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(2), pages 309-324, March.
    8. Sule Alan & Martin Browning, 2010. "Estimating Intertemporal Allocation Parameters using Synthetic Residual Estimation," Review of Economic Studies, Oxford University Press, vol. 77(4), pages 1231-1261.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Fedor Iskhakov & Jinhyuk Lee & John Rust & Bertel Schjerning & Kyoungwon Seo, 2015. "Constrained Optimization Approaches to Estimation of Structural Models: Comment," Discussion Papers 15-05, University of Copenhagen. Department of Economics.
    2. Iskhakov, Fedor, 2015. "Multidimensional endogenous gridpoint method: Solving triangular dynamic stochastic optimization problems without root-finding operations," Economics Letters, Elsevier, vol. 135(C), pages 72-76.
    3. Fedor Iskhakov & Thomas Høgholm Jørgensen & John Rust & Bertel Schjerning, 2015. "Estimating Discrete-Continuous Choice Models: The Endogenous Grid Method with Taste Shocks," Discussion Papers 15-19, University of Copenhagen. Department of Economics.

    More about this item


    Structural estimation; Continuous choice; Endogenous Grid Method (EGM); Mathematical Programming with Equilibrium Constraints (MPEC);

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:119:y:2013:i:3:p:287-290. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.