IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v235y2025ics0921800925001120.html
   My bibliography  Save this article

Estimating opportunity costs for energy-efficiency renovations: Case study in Germany

Author

Listed:
  • Galvin, Ray
  • Galvin, Paul

Abstract

Since energy consumption in residential buildings produces 26 % of CO2 emissions worldwide, there is an urgent need to improve the energy efficiency of older buildings. This is expensive, and a component often poorly estimated is opportunity costs: the losses a building owner incurs by investing in an energy-efficiency upgrade rather than in a more profitable project. Some recent studies assume opportunity costs of about 6 % of the property owner's up-front cash investment, but they assume very passive investment behavior. This paper uses a case study of a standard energy-performance upgrade of a typical, gas-heated 1950s–60s western German apartment and an alternative investment of purchasing an additional rental property. It uses realistic figures for costs of renovation and finance, benefits through energy and CO2 tax savings and subsidies currently on offer, likely energy price and CO2 tax inflation rates, and realistic discount rates. The alternative investment is to purchase a rental apartment using the up-front cash as the deposit, based on actual properties for sale. After 25 years the most economically sound upgrade brings a loss of around 207 %, while the purchase brings a gain of at least 666 %, with a minimum opportunity cost of 8.49 % per year cumulative.

Suggested Citation

  • Galvin, Ray & Galvin, Paul, 2025. "Estimating opportunity costs for energy-efficiency renovations: Case study in Germany," Ecological Economics, Elsevier, vol. 235(C).
  • Handle: RePEc:eee:ecolec:v:235:y:2025:i:c:s0921800925001120
    DOI: 10.1016/j.ecolecon.2025.108629
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800925001120
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2025.108629?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Juan Francisco Azcarate-Aguerre & Mira Conci & Markus Zils & Peter Hopkinson & Tillmann Klein, 2022. "Building energy retrofit-as-a-service: a Total Value of Ownership assessment methodology to support whole life-cycle building circularity and decarbonisation," Construction Management and Economics, Taylor & Francis Journals, vol. 40(9), pages 676-689, September.
    2. Rui Neves-Silva & Luis M. Camarinha-Matos, 2022. "Simulation-Based Decision Support System for Energy Efficiency in Buildings Retrofitting," Sustainability, MDPI, vol. 14(19), pages 1-18, September.
    3. Taruttis, Lisa & Weber, Christoph, 2022. "Estimating the impact of energy efficiency on housing prices in Germany: Does regional disparity matter?," Energy Economics, Elsevier, vol. 105(C).
    4. Todd D. Gerarden & Richard G. Newell & Robert N. Stavins, 2025. "Assessing the Energy-Efficiency Gap," World Scientific Book Chapters, in: Economics of Environment, Climate Change, and Wine Selected Papers of Robert N Stavins Volume 3 (2011–2023), chapter 4, pages 53-118, World Scientific Publishing Co. Pte. Ltd..
    5. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2005. "A tale of two market failures: Technology and environmental policy," Ecological Economics, Elsevier, vol. 54(2-3), pages 164-174, August.
    6. Galvin, Ray, 2024. "The economic losses of energy-efficiency renovation of Germany's older dwellings: The size of the problem and the financial challenge it presents," Energy Policy, Elsevier, vol. 184(C).
    7. Jaffe, Adam B. & Stavins, Robert N., 1994. "The energy paradox and the diffusion of conservation technology," Resource and Energy Economics, Elsevier, vol. 16(2), pages 91-122, May.
    8. Amstalden, Roger W. & Kost, Michael & Nathani, Carsten & Imboden, Dieter M., 2007. "Economic potential of energy-efficient retrofitting in the Swiss residential building sector: The effects of policy instruments and energy price expectations," Energy Policy, Elsevier, vol. 35(3), pages 1819-1829, March.
    9. Ramos, A. & Gago, A. & Labandeira, X. & Linares, P., 2015. "The role of information for energy efficiency in the residential sector," Energy Economics, Elsevier, vol. 52(S1), pages 17-29.
    10. Baniassadi, Amir & Heusinger, Jannik & Gonzalez, Pablo Izaga & Weber, Stephan & Samuelson, Holly W., 2022. "Co-benefits of energy efficiency in residential buildings," Energy, Elsevier, vol. 238(PB).
    11. Fina, Bernadette & Auer, Hans & Friedl, Werner, 2020. "Cost-optimal economic potential of shared rooftop PV in energy communities: Evidence from Austria," Renewable Energy, Elsevier, vol. 152(C), pages 217-228.
    12. Allcott, Hunt, 2011. "Social norms and energy conservation," Journal of Public Economics, Elsevier, vol. 95(9-10), pages 1082-1095, October.
    13. Reuter, Matthias & Patel, Martin K. & Eichhammer, Wolfgang & Lapillonne, Bruno & Pollier, Karine, 2020. "A comprehensive indicator set for measuring multiple benefits of energy efficiency," Energy Policy, Elsevier, vol. 139(C).
    14. Fisher, Anthony C. & Rothkopf, Michael H., 1989. "Market failure and energy policy A rationale for selective conservation," Energy Policy, Elsevier, vol. 17(4), pages 397-406, August.
    15. Theofano Fotiou & Pantelis Capros & Panagiotis Fragkos, 2022. "Policy Modelling for Ambitious Energy Efficiency Investment in the EU Residential Buildings," Energies, MDPI, vol. 15(6), pages 1-29, March.
    16. Lai, Yuan & Papadopoulos, Sokratis & Fuerst, Franz & Pivo, Gary & Sagi, Jacob & Kontokosta, Constantine E., 2022. "Building retrofit hurdle rates and risk aversion in energy efficiency investments," Applied Energy, Elsevier, vol. 306(PB).
    17. Karpinska, Lilia & Śmiech, Sławomir, 2020. "Conceptualising housing costs: The hidden face of energy poverty in Poland," Energy Policy, Elsevier, vol. 147(C).
    18. Das, Saptarshi & Hittinger, Eric & Williams, Eric, 2020. "Learning is not enough: Diminishing marginal revenues and increasing abatement costs of wind and solar," Renewable Energy, Elsevier, vol. 156(C), pages 634-644.
    19. Allcott, Hunt, 2011. "Social norms and energy conservation," Journal of Public Economics, Elsevier, vol. 95(9), pages 1082-1095.
    20. Jaffe, Adam B. & Stavins, Robert N., 1994. "The energy-efficiency gap What does it mean?," Energy Policy, Elsevier, vol. 22(10), pages 804-810, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Galvin, Ray, 2024. "The economic losses of energy-efficiency renovation of Germany's older dwellings: The size of the problem and the financial challenge it presents," Energy Policy, Elsevier, vol. 184(C).
    2. Trotta, Gianluca, 2018. "Factors affecting energy-saving behaviours and energy efficiency investments in British households," Energy Policy, Elsevier, vol. 114(C), pages 529-539.
    3. Giraudet, Louis-Gaëtan, 2020. "Energy efficiency as a credence good: A review of informational barriers to energy savings in the building sector," Energy Economics, Elsevier, vol. 87(C).
    4. Ante Busic-Sontic & Franz Fuerst, 2017. "The Personality Profiles of Early Adopters of Energy-Efficient Technology," SOEPpapers on Multidisciplinary Panel Data Research 924, DIW Berlin, The German Socio-Economic Panel (SOEP).
    5. Schleich, Joachim & Gassmann, Xavier & Meissner, Thomas & Faure, Corinne, 2019. "A large-scale test of the effects of time discounting, risk aversion, loss aversion, and present bias on household adoption of energy-efficient technologies," Energy Economics, Elsevier, vol. 80(C), pages 377-393.
    6. Louis-Gaëtan Giraudet, 2018. "Energy efficiency as a credence good: A review of informational barriers to building energy savings," Working Papers 2018.07, FAERE - French Association of Environmental and Resource Economists.
    7. Laura Abrardi, 2019. "Behavioral barriers and the energy efficiency gap: a survey of the literature," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 46(1), pages 25-43, March.
    8. S. Ceolotto & E. Denny, 2024. "Putting a New ‘Spin’ on Energy Information: Measuring the Impact of Reframing Energy Efficiency Information on Tumble Dryer Choices in a Multi-country Experiment," Journal of Consumer Policy, Springer, vol. 47(1), pages 51-108, March.
    9. Todd D. Gerarden & Richard G. Newell & Robert N. Stavins, 2025. "Assessing the Energy-Efficiency Gap," World Scientific Book Chapters, in: Economics of Environment, Climate Change, and Wine Selected Papers of Robert N Stavins Volume 3 (2011–2023), chapter 4, pages 53-118, World Scientific Publishing Co. Pte. Ltd..
    10. Dalia Streimikiene & Tomas Balezentis & Irena Alebaite, 2020. "Climate Change Mitigation in Households between Market Failures and Psychological Barriers," Energies, MDPI, vol. 13(11), pages 1-21, June.
    11. Rockstuhl, Sebastian & Wenninger, Simon & Wiethe, Christian & Häckel, Björn, 2021. "Understanding the risk perception of energy efficiency investments: Investment perspective vs. energy bill perspective," Energy Policy, Elsevier, vol. 159(C).
    12. Chersoni, Giulia & DellaValle, Nives & Fontana, Magda, 2022. "Modelling thermal insulation investment choice in the EU via a behaviourally informed agent-based model," Energy Policy, Elsevier, vol. 163(C).
    13. Chaudhuri, Kausik & Huaccha, Gissell, 2023. "Who bears the energy cost? Local income deprivation and the household energy efficiency gap," Energy Economics, Elsevier, vol. 127(PA).
    14. Kenneth Gillingham & Karen Palmer, 2014. "Bridging the Energy Efficiency Gap: Policy Insights from Economic Theory and Empirical Evidence," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 8(1), pages 18-38, January.
    15. Mark A. Andor & David H. Bernstein & Stephan Sommer, 2021. "Determining the efficiency of residential electricity consumption," Empirical Economics, Springer, vol. 60(6), pages 2897-2923, June.
    16. d'Adda, Giovanna & Galliera, Arianna & Tavoni, Massimo, 2020. "Urgency and engagement: Empirical evidence from a large-scale intervention on energy use awareness," Journal of Economic Psychology, Elsevier, vol. 81(C).
    17. Candice Howarth & Ben M. Roberts, 2018. "The Role of the UK Green Deal in Shaping Pro-Environmental Behaviours: Insights from Two Case Studies," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
    18. Kumar, Pranay & Caggiano, Holly & Shwom, Rachael & Felder, Frank A. & Andrews, Clinton J., 2023. "Saving from home! How income, efficiency, and curtailment behaviors shape energy consumption dynamics in US households?," Energy, Elsevier, vol. 271(C).
    19. Carroll, James & Denny, Eleanor & Lyons, Ronan C. & Petrov, Ivan, 2024. "Better energy cost information changes household property investment decisions: Evidence from a nationwide experiment," Energy Economics, Elsevier, vol. 139(C).
    20. Singhal, Puja & Pahle, Michael & Kalkuhl, Matthias & Levesque, Antoine & Sommer, Stephan & Berneiser, Jessica, 2022. "Beyond good faith: Why evidence-based policy is necessary to decarbonize buildings cost-effectively in Germany," Energy Policy, Elsevier, vol. 169(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:235:y:2025:i:c:s0921800925001120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.