IDEAS home Printed from https://ideas.repec.org/a/eee/ecofin/v58y2021ics1062940821001443.html
   My bibliography  Save this article

A new copula for modeling portfolios with skewed, leptokurtic and high-order dependent risk factors

Author

Listed:
  • Quatto, Piero
  • Vacca, Gianmarco
  • Zoia, Maria Grazia

Abstract

The paper proposes a new copula for modeling higher-order dependencies between pairs of portfolio assets, employing orthogonal polynomials to model symmetric co-kurtoses. Skewness and leptokurtosis of portfolio margins are modeled either with the Gram–Charlier expansion of the Normal distribution or Gram–Charlier-like expansions of leptokurtic laws. Details on the estimation method of this copula are provided, and a simulation study is carried out to assess its potential range of applicability with respect to widely employed alternatives in the copula literature. Empirical evidence of the suitability of this approach to model financial data and compute risk measures is provided.

Suggested Citation

  • Quatto, Piero & Vacca, Gianmarco & Zoia, Maria Grazia, 2021. "A new copula for modeling portfolios with skewed, leptokurtic and high-order dependent risk factors," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
  • Handle: RePEc:eee:ecofin:v:58:y:2021:i:c:s1062940821001443
    DOI: 10.1016/j.najef.2021.101529
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062940821001443
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.najef.2021.101529?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Y. Malevergne & D. Sornette, 2003. "Testing the Gaussian copula hypothesis for financial assets dependences," Quantitative Finance, Taylor & Francis Journals, vol. 3(4), pages 231-250.
    2. Renée Fry-McKibbin & Cody Yu-Ling Hsiao, 2018. "Extremal dependence tests for contagion," Econometric Reviews, Taylor & Francis Journals, vol. 37(6), pages 626-649, July.
    3. Gallant, Ronald & Tauchen, George, 1989. "Seminonparametric Estimation of Conditionally Constrained Heterogeneous Processes: Asset Pricing Applications," Econometrica, Econometric Society, vol. 57(5), pages 1091-1120, September.
    4. Matthias Fischer & Christian Kock & Stephan Schluter & Florian Weigert, 2009. "An empirical analysis of multivariate copula models," Quantitative Finance, Taylor & Francis Journals, vol. 9(7), pages 839-854.
    5. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    6. W. K. Li & T. K. Mak, 1994. "On The Squared Residual Autocorrelations In Non‐Linear Time Series With Conditional Heteroskedasticity," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(6), pages 627-636, November.
    7. Christie-David, Rohan & Chaudhry, Mukesh, 2001. "Coskewness and cokurtosis in futures markets," Journal of Empirical Finance, Elsevier, vol. 8(1), pages 55-81, March.
    8. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    9. Jian Yang & Yinggang Zhou & Zijun Wang, 2010. "Conditional Coskewness in Stock and Bond Markets: Time-Series Evidence," Management Science, INFORMS, vol. 56(11), pages 2031-2049, November.
    10. Peter Christoffersen, 2004. "Backtesting Value-at-Risk: A Duration-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 84-108.
    11. Zoia, Maria Grazia & Biffi, Paola & Nicolussi, Federica, 2018. "Value at risk and expected shortfall based on Gram-Charlier-like expansions," Journal of Banking & Finance, Elsevier, vol. 93(C), pages 92-104.
    12. Christian M. Hafner, 2003. "Fourth Moment Structure of Multivariate GARCH Models," Journal of Financial Econometrics, Oxford University Press, vol. 1(1), pages 26-54.
    13. François Longin & Bruno Solnik, 2001. "Extreme Correlation of International Equity Markets," Journal of Finance, American Finance Association, vol. 56(2), pages 649-676, April.
    14. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    15. Fang, Hsing & Lai, Tsong-Yue, 1997. "Co-Kurtosis and Capital Asset Pricing," The Financial Review, Eastern Finance Association, vol. 32(2), pages 293-307, May.
    16. Vacca, Gianmarco & Zoia, Maria Grazia, 2019. "Kurtosis analysis in GARCH models with Gram–Charlier-like innovations," Economics Letters, Elsevier, vol. 183(C), pages 1-1.
    17. Kim Hiang Liow & Lanz C. W. J. Chan, 2005. "Co‐skewness and Co‐kurtosis in Global Real Estate Securities," Journal of Property Research, Taylor & Francis Journals, vol. 22(2-3), pages 163-203, June.
    18. Fang, Hong-Bin & Fang, Kai-Tai & Kotz, Samuel, 2002. "The Meta-elliptical Distributions with Given Marginals," Journal of Multivariate Analysis, Elsevier, vol. 82(1), pages 1-16, July.
    19. Luca Bagnato & Valerio Potì & Maria Zoia, 2015. "The role of orthogonal polynomials in adjusting hyperpolic secant and logistic distributions to analyse financial asset returns," Statistical Papers, Springer, vol. 56(4), pages 1205-1234, November.
    20. Bera, Anil K. & Jarque, Carlos M., 1981. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals : Monte Carlo Evidence," Economics Letters, Elsevier, vol. 7(4), pages 313-318.
    21. M. Faliva & V. Potì & M. G. Zoia, 2016. "Orthogonal polynomials for tailoring density functions to excess kurtosis, asymmetry, and dependence," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(1), pages 49-62, January.
    22. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kenichiro Shiraya & Tomohisa Yamakami, 2023. "Constructing Copulas Using Corrected Hermite Polynomial Expansion for Estimating Cross Foreign Exchange Volatility," Papers 2301.10044, arXiv.org.
    2. Yao, Can-Zhong & Li, Min-Jian, 2023. "GARCH-MIDAS-GAS-copula model for CoVaR and risk spillover in stock markets," The North American Journal of Economics and Finance, Elsevier, vol. 66(C).
    3. Shiraya, Kenichiro & Yamakami, Tomohisa, 2024. "Constructing copulas using corrected Hermite polynomial expansion for estimating cross foreign exchange volatility," European Journal of Operational Research, Elsevier, vol. 314(3), pages 1195-1214.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    2. Zoia, Maria Grazia & Biffi, Paola & Nicolussi, Federica, 2018. "Value at risk and expected shortfall based on Gram-Charlier-like expansions," Journal of Banking & Finance, Elsevier, vol. 93(C), pages 92-104.
    3. Vacca, Gianmarco & Zoia, Maria Grazia & Bagnato, Luca, 2022. "Forecasting in GARCH models with polynomially modified innovations," International Journal of Forecasting, Elsevier, vol. 38(1), pages 117-141.
    4. Piero Quatto & Gianmarco Vacca & Maria Grazia Zoia, 2021. "Modeling Portfolios with Leptokurtic and Dependent Risk Factors," Papers 2106.04218, arXiv.org.
    5. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    6. Lazar, Emese & Zhang, Ning, 2019. "Model risk of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 74-93.
    7. Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel R., 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 150-160.
    8. Carol Alexander & Emese Lazar & Silvia Stanescu, 2011. "Analytic Approximations to GARCH Aggregated Returns Distributions with Applications to VaR and ETL," ICMA Centre Discussion Papers in Finance icma-dp2011-08, Henley Business School, University of Reading.
    9. Marie Kratz & Yen H Lok & Alexander J Mcneil, 2016. "Multinomial var backtests: A simple implicit approach to backtesting expected shortfall," Working Papers hal-01424279, HAL.
    10. Enrique Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2021. "Backtesting expected shortfall for world stock index ETFs with extreme value theory and Gram–Charlier mixtures," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4163-4189, July.
    11. Siburg, Karl Friedrich & Stoimenov, Pavel & Weiß, Gregor N.F., 2015. "Forecasting portfolio-Value-at-Risk with nonparametric lower tail dependence estimates," Journal of Banking & Finance, Elsevier, vol. 54(C), pages 129-140.
    12. David Happersberger & Harald Lohre & Ingmar Nolte, 2020. "Estimating portfolio risk for tail risk protection strategies," European Financial Management, European Financial Management Association, vol. 26(4), pages 1107-1146, September.
    13. d’Addona, Stefano & Khanom, Najrin, 2022. "Estimating tail-risk using semiparametric conditional variance with an application to meme stocks," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 241-260.
    14. Weiß, Gregor N.F., 2011. "Are Copula-GoF-tests of any practical use? Empirical evidence for stocks, commodities and FX futures," The Quarterly Review of Economics and Finance, Elsevier, vol. 51(2), pages 173-188, May.
    15. Brechmann Eike Christain & Czado Claudia, 2013. "Risk management with high-dimensional vine copulas: An analysis of the Euro Stoxx 50," Statistics & Risk Modeling, De Gruyter, vol. 30(4), pages 307-342, December.
    16. Krzysztof Echaust & Małgorzata Just, 2021. "Tail Dependence between Crude Oil Volatility Index and WTI Oil Price Movements during the COVID-19 Pandemic," Energies, MDPI, vol. 14(14), pages 1-21, July.
    17. Kwangmin Jung & Donggyu Kim & Seunghyeon Yu, 2022. "Next generation models for portfolio risk management: An approach using financial big data," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 89(3), pages 765-787, September.
    18. Maria Grazia Zoia & Gianmarco Vacca & Laura Barbieri, 2020. "Modeling Multivariate Financial Series and Computing Risk Measures via Gram–Charlier-Like Expansions," Risks, MDPI, vol. 8(4), pages 1-21, November.
    19. León, Ángel & Ñíguez, Trino-Manuel, 2021. "The transformed Gram Charlier distribution: Parametric properties and financial risk applications," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 323-349.
    20. Rhee, S. Ghon & Wu, Feng (Harry), 2020. "Conditional extreme risk, black swan hedging, and asset prices," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 412-435.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:58:y:2021:i:c:s1062940821001443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.