IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v73y2014icp103-111.html
   My bibliography  Save this article

Nonparametric tests for panel count data with unequal observation processes

Author

Listed:
  • Li, Yang
  • Zhao, Hui
  • Sun, Jianguo
  • Kim, KyungMann

Abstract

Nonparametric comparison for panel count data is discussed. For the situation, most available approaches require that all subjects have the same observation process. However, such an assumption may not hold in reality. To address this, a new class of test procedures are proposed that allow unequal observation processes for the subjects from different treatment groups. The method applies to both univariate and multivariate panel count data. In addition, the asymptotic normality of the proposed test statistics is established and a simulation study is conducted to evaluate the finite sample properties of the proposed approach. The simulation results show that the proposed procedures work well for practical situations and in particular for sparsely distributed data. They are applied to a set of panel count data arising from a skin cancer study.

Suggested Citation

  • Li, Yang & Zhao, Hui & Sun, Jianguo & Kim, KyungMann, 2014. "Nonparametric tests for panel count data with unequal observation processes," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 103-111.
  • Handle: RePEc:eee:csdana:v:73:y:2014:i:c:p:103-111
    DOI: 10.1016/j.csda.2013.11.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947313004520
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jianguo Sun, 2003. "A nonparametric test for panel count data," Biometrika, Biometrika Trust, vol. 90(1), pages 199-208, March.
    2. Wright, F.T. & Nashimoto, Kane, 2011. "One-sided multiple comparisons for treatment means with a control mean," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1530-1539, April.
    3. Ying Zhang, 2006. "Nonparametric k-sample tests with panel count data," Biometrika, Biometrika Trust, vol. 93(4), pages 777-790, December.
    4. Debashis Ghosh & D. Y. Lin, 2000. "Nonparametric Analysis of Recurrent Events and Death," Biometrics, The International Biometric Society, vol. 56(2), pages 554-562, June.
    5. X. Joan Hu & Jianguo Sun & Lee‐Jen Wei, 2003. "Regression Parameter Estimation from Panel Counts," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(1), pages 25-43, March.
    6. Wang, You-Gan & Hin, Lin-Yee, 2010. "Modeling strategies in longitudinal data analysis: Covariate, variance function and correlation structure selection," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3359-3370, December.
    7. Chen, Jie & Luo, Jianfeng & Liu, Kenneth & Mehrotra, Devan V., 2011. "On power and sample size computation for multiple testing procedures," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 110-122, January.
    8. N. Balakrishnan & Xingqiu Zhao, 2011. "A class of multi-sample nonparametric tests for panel count data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(1), pages 135-156, February.
    9. D. Y. Lin & L. J. Wei & I. Yang & Z. Ying, 2000. "Semiparametric regression for the mean and rate functions of recurrent events," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 711-730.
    10. Sun, Jianguo & Park, Do-Hwan & Sun, Liuquan & Zhao, Xingqiu, 2005. "Semiparametric Regression Analysis of Longitudinal Data With Informative Observation Times," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 882-889, September.
    11. J. Sun & L. J. Wei, 2000. "Regression analysis of panel count data with covariate‐dependent observation and censoring times," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 293-302.
    12. Xingqiu Zhao & N. Balakrishnan & Jianguo Sun, 2011. "Nonparametric inference based on panel count data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 1-42, May.
    13. Chiung-Yu Huang & Mei-Cheng Wang & Ying Zhang, 2006. "Analysing panel count data with informative observation times," Biometrika, Biometrika Trust, vol. 93(4), pages 763-775, December.
    14. Buzkova Petra, 2010. "Panel Count Data Regression with Informative Observation Times," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-24, September.
    15. Fu, Liya & Wang, You-Gan, 2012. "Quantile regression for longitudinal data with a working correlation model," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2526-2538.
    16. Zhao, Xingqiu & Tong, Xingwei, 2011. "Semiparametric regression analysis of panel count data with informative observation times," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 291-300, January.
    17. Lin D Y & Wei L J & Ying Z, 2001. "Semiparametric Transformation Models for Point Processes," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 620-628, June.
    18. Ye, Fei & Yue, Chen & Yang, Ying, 2013. "Modeling time-dependent overdispersion in longitudinal count data," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 257-264.
    19. Balakrishnan, N. & Zhao, Xingqiu, 2010. "A nonparametric test for the equality of counting processes with panel count data," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 135-142, January.
    20. Mao, Jie & Zhu, Zhongyi & Fung, Wing K., 2011. "Joint estimation of mean-covariance model for longitudinal data with basis function approximations," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 983-992, February.
    21. Zhao, Xingqiu & Tong, Xingwei & Sun, Jianguo, 2013. "Robust estimation for panel count data with informative observation times," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 33-40.
    22. Pinçon, Claire & Pons, Odile, 2009. "Nonparametric linear tests with multiple events," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4279-4289, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Li & Xin He & Haiying Wang & Jianguo Sun, 2016. "Regression analysis of longitudinal data with correlated censoring and observation times," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(3), pages 343-362, July.
    2. Yao, Bin & Wang, Lianming & He, Xin, 2016. "Semiparametric regression analysis of panel count data allowing for within-subject correlation," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 47-59.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Haixiang & Zhao, Hui & Sun, Jianguo & Wang, Dehui & Kim, KyungMann, 2013. "Regression analysis of multivariate panel count data with an informative observation process," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 71-80.
    2. Jie Zhou & Haixiang Zhang & Liuquan Sun & Jianguo Sun, 0. "Joint analysis of panel count data with an informative observation process and a dependent terminal event," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 0, pages 1-25.
    3. Jie Zhou & Haixiang Zhang & Liuquan Sun & Jianguo Sun, 2017. "Joint analysis of panel count data with an informative observation process and a dependent terminal event," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 560-584, October.
    4. Xingqiu Zhao & N. Balakrishnan & Jianguo Sun, 2011. "Nonparametric inference based on panel count data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 1-42, May.
    5. Zhao, Xingqiu & Tong, Xingwei, 2011. "Semiparametric regression analysis of panel count data with informative observation times," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 291-300, January.
    6. Zhao, Xingqiu & Tong, Xingwei & Sun, Jianguo, 2013. "Robust estimation for panel count data with informative observation times," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 33-40.
    7. Gang Cheng & Ying Zhang & Liqiang Lu, 2011. "Efficient algorithms for computing the non and semi-parametric maximum likelihood estimates with panel count data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(2), pages 567-579.
    8. Sy Han Chiou & Gongjun Xu & Jun Yan & Chiung‐Yu Huang, 2018. "Semiparametric estimation of the accelerated mean model with panel count data under informative examination times," Biometrics, The International Biometric Society, vol. 74(3), pages 944-953, September.
    9. Hangjin Jiang & Wen Su & Xingqiu Zhao, 2020. "Robust estimation for panel count data with informative observation times and censoring times," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(1), pages 65-84, January.
    10. Xin He & Xuenan Feng & Xingwei Tong & Xingqiu Zhao, 0. "Semiparametric partially linear varying coefficient models with panel count data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 0, pages 1-28.
    11. Xin He & Xuenan Feng & Xingwei Tong & Xingqiu Zhao, 2017. "Semiparametric partially linear varying coefficient models with panel count data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(3), pages 439-466, July.
    12. Liang Zhu & Hui Zhao & Jianguo Sun & Wendy Leisenring & Leslie L. Robison, 2015. "Regression analysis of mixed recurrent-event and panel-count data with additive rate models," Biometrics, The International Biometric Society, vol. 71(1), pages 71-79, March.
    13. Yang Li & Xin He & Haiying Wang & Jianguo Sun, 2016. "Regression analysis of longitudinal data with correlated censoring and observation times," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(3), pages 343-362, July.
    14. Na Cai & Wenbin Lu & Hao Helen Zhang, 2012. "Time-Varying Latent Effect Model for Longitudinal Data with Informative Observation Times," Biometrics, The International Biometric Society, vol. 68(4), pages 1093-1102, December.
    15. Li, Yang & He, Xin & Wang, Haiying & Zhang, Bin & Sun, Jianguo, 2015. "Semiparametric regression of multivariate panel count data with informative observation times," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 209-219.
    16. Yao, Bin & Wang, Lianming & He, Xin, 2016. "Semiparametric regression analysis of panel count data allowing for within-subject correlation," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 47-59.
    17. Xingqiu Zhao & Jianguo Sun, 2011. "Nonparametric Comparison for Panel Count Data with Unequal Observation Processes," Biometrics, The International Biometric Society, vol. 67(3), pages 770-779, September.
    18. Hui Zhao & Yang Li & Jianguo Sun, 2013. "Semiparametric analysis of multivariate panel count data with dependent observation processes and a terminal event," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(2), pages 379-394, June.
    19. Yu Liang & Wenbin Lu & Zhiliang Ying, 2009. "Joint Modeling and Analysis of Longitudinal Data with Informative Observation Times," Biometrics, The International Biometric Society, vol. 65(2), pages 377-384, June.
    20. Haiying Wang & Yang Li & Jianguo Sun, 2015. "Focused and Model Average Estimation for Regression Analysis of Panel Count Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 732-745, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:73:y:2014:i:c:p:103-111. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.