IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v42y2015i3p732-745.html
   My bibliography  Save this article

Focused and Model Average Estimation for Regression Analysis of Panel Count Data

Author

Listed:
  • Haiying Wang
  • Yang Li
  • Jianguo Sun

Abstract

type="main" xml:id="sjos12133-abs-0001"> Panel count data arise in many fields and a number of estimation procedures have been developed along with two procedures for variable selection. In this paper, we discuss model selection and parameter estimation together. For the former, a focused information criterion (FIC) is presented and for the latter, a frequentist model average (FMA) estimation procedure is developed. A main advantage, also the difference from the existing model selection methods, of the FIC is that it emphasizes the accuracy of the estimation of the parameters of interest, rather than all parameters. Further efficiency gain can be achieved by the FMA estimation procedure as unlike existing methods, it takes into account the variability in the stage of model selection. Asymptotic properties of the proposed estimators are established, and a simulation study conducted suggests that the proposed methods work well for practical situations. An illustrative example is also provided. © 2014 Board of the Foundation of the Scandinavian Journal of Statistics

Suggested Citation

  • Haiying Wang & Yang Li & Jianguo Sun, 2015. "Focused and Model Average Estimation for Regression Analysis of Panel Count Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 732-745, September.
  • Handle: RePEc:bla:scjsta:v:42:y:2015:i:3:p:732-745
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/sjos.12133
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jianguo Sun, 2003. "A nonparametric test for panel count data," Biometrika, Biometrika Trust, vol. 90(1), pages 199-208, March.
    2. Ying Zhang, 2002. "A semiparametric pseudolikelihood estimation method for panel count data," Biometrika, Biometrika Trust, vol. 89(1), pages 39-48, March.
    3. Ying Zhang, 2006. "Nonparametric k-sample tests with panel count data," Biometrika, Biometrika Trust, vol. 93(4), pages 777-790, December.
    4. Kabaila, Paul & Leeb, Hannes, 2006. "On the Large-Sample Minimal Coverage Probability of Confidence Intervals After Model Selection," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 619-629, June.
    5. Hjort, Nils Lid & Claeskens, Gerda, 2006. "Focused Information Criteria and Model Averaging for the Cox Hazard Regression Model," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1449-1464, December.
    6. Xingqiu Zhao & Jianguo Sun, 2011. "Nonparametric Comparison for Panel Count Data with Unequal Observation Processes," Biometrics, The International Biometric Society, vol. 67(3), pages 770-779, September.
    7. Wu, Tong Tong & He, Xin, 2012. "Coordinate ascent for penalized semiparametric regression on high-dimensional panel count data," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 25-33, January.
    8. Claeskens,Gerda & Hjort,Nils Lid, 2008. "Model Selection and Model Averaging," Cambridge Books, Cambridge University Press, number 9780521852258.
    9. N. Balakrishnan & Xingqiu Zhao, 2011. "A class of multi-sample nonparametric tests for panel count data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(1), pages 135-156, February.
    10. Xingwei Tong & Xin He & Liuquan Sun & Jianguo Sun, 2009. "Variable Selection for Panel Count Data via Non‐Concave Penalized Estimating Function," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 620-635, December.
    11. repec:taf:jnlbes:v:30:y:2012:i:1:p:132-142 is not listed on IDEAS
    12. J. Sun & L. J. Wei, 2000. "Regression analysis of panel count data with covariate‐dependent observation and censoring times," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 293-302.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Zhou & Haixiang Zhang & Liuquan Sun & Jianguo Sun, 0. "Joint analysis of panel count data with an informative observation process and a dependent terminal event," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 0, pages 1-25.
    2. Jie Zhou & Haixiang Zhang & Liuquan Sun & Jianguo Sun, 2017. "Joint analysis of panel count data with an informative observation process and a dependent terminal event," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 560-584, October.
    3. Xin He & Xuenan Feng & Xingwei Tong & Xingqiu Zhao, 0. "Semiparametric partially linear varying coefficient models with panel count data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 0, pages 1-28.
    4. Zhao, Xingqiu & Tong, Xingwei, 2011. "Semiparametric regression analysis of panel count data with informative observation times," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 291-300, January.
    5. Zhao, Xingqiu & Tong, Xingwei & Sun, Jianguo, 2013. "Robust estimation for panel count data with informative observation times," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 33-40.
    6. Gang Cheng & Ying Zhang & Liqiang Lu, 2011. "Efficient algorithms for computing the non and semi-parametric maximum likelihood estimates with panel count data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(2), pages 567-579.
    7. Li, Yang & Zhao, Hui & Sun, Jianguo & Kim, KyungMann, 2014. "Nonparametric tests for panel count data with unequal observation processes," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 103-111.
    8. Yao, Bin & Wang, Lianming & He, Xin, 2016. "Semiparametric regression analysis of panel count data allowing for within-subject correlation," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 47-59.
    9. Xingqiu Zhao & Jianguo Sun, 2011. "Nonparametric Comparison for Panel Count Data with Unequal Observation Processes," Biometrics, The International Biometric Society, vol. 67(3), pages 770-779, September.
    10. Zhang, Haixiang & Zhao, Hui & Sun, Jianguo & Wang, Dehui & Kim, KyungMann, 2013. "Regression analysis of multivariate panel count data with an informative observation process," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 71-80.
    11. Xin He & Xuenan Feng & Xingwei Tong & Xingqiu Zhao, 2017. "Semiparametric partially linear varying coefficient models with panel count data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(3), pages 439-466, July.
    12. Xingqiu Zhao & N. Balakrishnan & Jianguo Sun, 2011. "Nonparametric inference based on panel count data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 1-42, May.
    13. Balakrishnan, N. & Zhao, Xingqiu, 2010. "A nonparametric test for the equality of counting processes with panel count data," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 135-142, January.
    14. Jianguo Sun & Xingwei Tong & Xin He, 2007. "Regression Analysis of Panel Count Data with Dependent Observation Times," Biometrics, The International Biometric Society, vol. 63(4), pages 1053-1059, December.
    15. N. Balakrishnan & Xingqiu Zhao, 2011. "A class of multi-sample nonparametric tests for panel count data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(1), pages 135-156, February.
    16. Xingwei Tong & Xin He & Liuquan Sun & Jianguo Sun, 2009. "Variable Selection for Panel Count Data via Non‐Concave Penalized Estimating Function," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 620-635, December.
    17. Yang Li & Xin He & Haiying Wang & Jianguo Sun, 2016. "Regression analysis of longitudinal data with correlated censoring and observation times," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(3), pages 343-362, July.
    18. Na Cai & Wenbin Lu & Hao Helen Zhang, 2012. "Time-Varying Latent Effect Model for Longitudinal Data with Informative Observation Times," Biometrics, The International Biometric Society, vol. 68(4), pages 1093-1102, December.
    19. Martin Jullum & Nils Lid Hjort, 2019. "What price semiparametric Cox regression?," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 406-438, July.
    20. Ganggang Xu & Suojin Wang & Jianhua Z. Huang, 2014. "Focused information criterion and model averaging based on weighted composite quantile regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 365-381, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:42:y:2015:i:3:p:732-745. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.