IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v62y2000i2p293-302.html
   My bibliography  Save this article

Regression analysis of panel count data with covariate‐dependent observation and censoring times

Author

Listed:
  • J. Sun
  • L. J. Wei

Abstract

Panel count data often occur in a long‐term study where the primary end point is the time to a specific event and each subject may experience multiple recurrences of this event. Furthermore, suppose that it is not feasible to keep subjects under observation continuously and the numbers of recurrences for each subject are only recorded at several distinct time points over the study period. Moreover, the set of observation times may vary from subject to subject. In this paper, regression methods, which are derived under simple semiparametric models, are proposed for the analysis of such longitudinal count data. Especially, we consider the situation when both observation and censoring times may depend on covariates. The new procedures are illustrated with data from a well‐known cancer study.

Suggested Citation

  • J. Sun & L. J. Wei, 2000. "Regression analysis of panel count data with covariate‐dependent observation and censoring times," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 293-302.
  • Handle: RePEc:bla:jorssb:v:62:y:2000:i:2:p:293-302
    DOI: 10.1111/1467-9868.00232
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9868.00232
    Download Restriction: no

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:62:y:2000:i:2:p:293-302. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery). General contact details of provider: http://edirc.repec.org/data/rssssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.