IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i2p983-992.html
   My bibliography  Save this article

Joint estimation of mean-covariance model for longitudinal data with basis function approximations

Author

Listed:
  • Mao, Jie
  • Zhu, Zhongyi
  • Fung, Wing K.

Abstract

When the selected parametric model for the covariance structure is far from the true one, the corresponding covariance estimator could have considerable bias. To balance the variability and bias of the covariance estimator, we employ a nonparametric method. In addition, as different mean structures may lead to different estimators of the covariance matrix, we choose a semiparametric model for the mean so as to provide a stable estimate of the covariance matrix. Based on the modified Cholesky decomposition of the covariance matrix, we construct the joint mean-covariance model by modeling the smooth functions using the spline method and estimate the associated parameters using the maximum likelihood approach. A simulation study and a real data analysis are conducted to illustrate the proposed approach and demonstrate the flexibility of the suggested model.

Suggested Citation

  • Mao, Jie & Zhu, Zhongyi & Fung, Wing K., 2011. "Joint estimation of mean-covariance model for longitudinal data with basis function approximations," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 983-992, February.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:2:p:983-992
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00318-X
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan, Jianqing & Huang, Tao & Li, Runze, 2007. "Analysis of Longitudinal Data With Semiparametric Estimation of Covariance Function," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 632-641, June.
    2. Wei Biao Wu, 2003. "Nonparametric estimation of large covariance matrices of longitudinal data," Biometrika, Biometrika Trust, vol. 90(4), pages 831-844, December.
    3. He, Xuming & Fung, Wing K. & Zhu, Zhongyi, 2005. "Robust Estimation in Generalized Partial Linear Models for Clustered Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1176-1184, December.
    4. Jianqing Fan & Runze Li, 2004. "New Estimation and Model Selection Procedures for Semiparametric Modeling in Longitudinal Data Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 710-723, January.
    5. Xuming He, 2002. "Estimation in a semiparametric model for longitudinal data with unspecified dependence structure," Biometrika, Biometrika Trust, vol. 89(3), pages 579-590, August.
    6. Zhongyi Zhu & Wing K. Fung & Xuming He, 2008. "On the asymptotics of marginal regression splines with longitudinal data," Biometrika, Biometrika Trust, vol. 95(4), pages 907-917.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xueying Zheng & Wing Fung & Zhongyi Zhu, 2013. "Robust estimation in joint mean–covariance regression model for longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(4), pages 617-638, August.
    2. Li, Yang & Zhao, Hui & Sun, Jianguo & Kim, KyungMann, 2014. "Nonparametric tests for panel count data with unequal observation processes," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 103-111.
    3. repec:eee:csdana:v:112:y:2017:i:c:p:129-144 is not listed on IDEAS
    4. repec:spr:compst:v:32:y:2017:i:3:d:10.1007_s00180-017-0714-6 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:2:p:983-992. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.