IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v58y2013icp187-200.html
   My bibliography  Save this article

Approximate posterior distributions for convolutional two-level hidden Markov models

Author

Listed:
  • Rimstad, Kjartan
  • Omre, Henning

Abstract

A convolutional two-level hidden Markov model is defined and evaluated. The bottom level contains an unobserved categorical Markov chain, and given the variables in this level the middle level contains unobserved conditionally independent Gaussian variables. The top level contains observable variables that are a convolution of the variables in the middle level plus additive Gaussian errors. The objective is to assess the categorical variables in the bottom level given the convolved observations in the top level. The inversion is cast in a Bayesian setting with a Markov chain prior model and convolved Gaussian likelihood model. The associated posterior model cannot be assessed since the normalizing constant is too computer demanding to calculate for realistic problems. Three approximate posterior models based on approximations of the likelihood model on generalized factorial form are defined. These approximations can be exactly assessed by the forward–backward algorithm. Both a synthetic case and a real seismic inversion case are used in an empirical evaluation. It is concluded that reliable and computationally efficient approximate posterior models for convolutional two-level hidden Markov models can be defined.

Suggested Citation

  • Rimstad, Kjartan & Omre, Henning, 2013. "Approximate posterior distributions for convolutional two-level hidden Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 187-200.
  • Handle: RePEc:eee:csdana:v:58:y:2013:i:c:p:187-200
    DOI: 10.1016/j.csda.2012.09.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312003210
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carvalho, Carlos M. & Lopes, Hedibert F., 2007. "Simulation-based sequential analysis of Markov switching stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4526-4542, May.
    2. Rong Chen & Jun S. Liu, 2000. "Mixture Kalman filters," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(3), pages 493-508.
    3. Godsill, Simon J. & Doucet, Arnaud & West, Mike, 2004. "Monte Carlo Smoothing for Nonlinear Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 156-168, January.
    4. Giordani, Paolo & Kohn, Robert & van Dijk, Dick, 2007. "A unified approach to nonlinearity, structural change, and outliers," Journal of Econometrics, Elsevier, vol. 137(1), pages 112-133, March.
    5. Kim, Chang-Jin, 1994. "Dynamic linear models with Markov-switching," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 1-22.
    6. Paul Fearnhead & Peter Clifford, 2003. "On-line inference for hidden Markov models via particle filters," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(4), pages 887-899.
    7. Hammer, Hugo & Tjelmeland, Håkon, 2011. "Approximate forward-backward algorithm for a switching linear Gaussian model," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 154-167, January.
    8. R. Reeves, 2004. "Efficient recursions for general factorisable models," Biometrika, Biometrika Trust, vol. 91(3), pages 751-757, September.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:58:y:2013:i:c:p:187-200. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.