IDEAS home Printed from
   My bibliography  Save this article

Model-based replacement of rounded zeros in compositional data: Classical and robust approaches


  • Martín-Fernández, J.A.
  • Hron, K.
  • Templ, M.
  • Filzmoser, P.
  • Palarea-Albaladejo, J.


The log-ratio methodology represents a powerful set of methods and techniques for statistical analysis of compositional data. These techniques may be used for the estimation of rounded zeros or values below the detection limit in cases when the underlying data are compositional in nature. An algorithm based on iterative log-ratio regressions is developed by combining a particular family of isometric log-ratio transformations with censored regression. In the context of classical regression methods, the equivalence of the method based on additive and isometric log-ratio transformations is proved. This equivalence does not hold for robust regression. Based on Monte Carlo methods, simulations are performed to assess the performance of classical and robust methods. To illustrate the method, a case study involving geochemical data is conducted.

Suggested Citation

  • Martín-Fernández, J.A. & Hron, K. & Templ, M. & Filzmoser, P. & Palarea-Albaladejo, J., 2012. "Model-based replacement of rounded zeros in compositional data: Classical and robust approaches," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2688-2704.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:9:p:2688-2704 DOI: 10.1016/j.csda.2012.02.012

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Amemiya, Takeshi, 1984. "Tobit models: A survey," Journal of Econometrics, Elsevier, vol. 24(1-2), pages 3-61.
    2. Hron, K. & Templ, M. & Filzmoser, P., 2010. "Imputation of missing values for compositional data using classical and robust methods," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3095-3107, December.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Tsagris, Michail, 2014. "The k-NN algorithm for compositional data: a revised approach with and without zero values present," MPRA Paper 65866, University Library of Munich, Germany.
    2. Tsagris, Michail, 2015. "Regression analysis with compositional data containing zero values," MPRA Paper 67868, University Library of Munich, Germany.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:9:p:2688-2704. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.