IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v204y2025ics0167947324001889.html
   My bibliography  Save this article

A copula duration model with dependent states and spells

Author

Listed:
  • Lo, Simon M.S.
  • Shi, Shuolin
  • Wilke, Ralf A.

Abstract

A nested Archimedean copula model for dependent states and spells is introduced and the link to a classical survival model with frailties is established. The model relaxes an important restriction of classical survival models as the distributions of unobservable heterogeneities are permitted to depend on the observable covariates. Its modular structure has practical advantages as the different components can be separately specified and estimation can be done sequentially or separately. This makes the model versatile and adaptable in empirical work. An application to labour market transitions with linked administrative data supports the need for a flexible specification of the dependence structure and the model for the marginal survivals. The conventional Markov Chain Model is shown to give sizeably biased results in the application.

Suggested Citation

  • Lo, Simon M.S. & Shi, Shuolin & Wilke, Ralf A., 2025. "A copula duration model with dependent states and spells," Computational Statistics & Data Analysis, Elsevier, vol. 204(C).
  • Handle: RePEc:eee:csdana:v:204:y:2025:i:c:s0167947324001889
    DOI: 10.1016/j.csda.2024.108104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947324001889
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2024.108104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sujica, Aleksandar & Van Keilegom, Ingrid, 2018. "The copula-graphic estimator in censored nonparametric location-scale regression models," Econometrics and Statistics, Elsevier, vol. 7(C), pages 89-114.
    2. Lo Simon M.S. & Stephan Gesine & Wilke Ralf A., 2017. "Competing Risks Copula Models for Unemployment Duration: An Application to a German Hartz Reform," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-20, January.
    3. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, December.
    4. Simon M. S. Lo & Ralf A. Wilke, 2010. "A copula model for dependent competing risks," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 359-376, March.
    5. Magnac, T. & Robin, J. -M., 1995. "An econometric analysis of labour market transitions using discrete and tenure data," Labour Economics, Elsevier, vol. 2(1), pages 106-106, March.
    6. Van den Berg, Gerard J., 2001. "Duration models: specification, identification and multiple durations," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 55, pages 3381-3460, Elsevier.
    7. Lo, Simon M.S. & Mammen, Enno & Wilke, Ralf A., 2020. "A nested copula duration model for competing risks with multiple spells," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    8. Curtis Eberwein & John C. Ham & Robert J. Lalonde, 1997. "The Impact of Being Offered and Receiving Classroom Training on the Employment Histories of Disadvantaged Women: Evidence from Experimental Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 655-682.
    9. Klara Goethals & Paul Janssen & Luc Duchateau, 2008. "Frailty models and copulas: similarities and differences," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(9), pages 1071-1079.
    10. Rivest, Louis-Paul & Wells, Martin T., 2001. "A Martingale Approach to the Copula-Graphic Estimator for the Survival Function under Dependent Censoring," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 138-155, October.
    11. Hofert, Marius & Maechler, Martin, 2011. "Nested Archimedean Copulas Meet R: The nacopula Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 39(i09).
    12. Raquel Carrasco & J. Ignacio García-Pérez, 2015. "Employment Dynamics Of Immigrants Versus Natives: Evidence From The Boom-Bust Period In Spain, 2000–2011," Economic Inquiry, Western Economic Association International, vol. 53(2), pages 1038-1060, April.
    13. Mirza Nazmul Hasan & Roel Braekers, 2021. "Estimation of the association parameters in hierarchically clustered survival data by nested Archimedean copula functions," Computational Statistics, Springer, vol. 36(4), pages 2755-2787, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lo, Simon M.S. & Mammen, Enno & Wilke, Ralf A., 2020. "A nested copula duration model for competing risks with multiple spells," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    2. Lo, Simon M.S. & Wilke, Ralf A. & Emura, Takeshi, 2024. "A semiparametric model for the cause-specific hazard under risk proportionality," Computational Statistics & Data Analysis, Elsevier, vol. 195(C).
    3. Gilles Crommen & Jad Beyhum & Ingrid Van Keilegom, 2024. "An instrumental variable approach under dependent censoring," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(2), pages 473-495, June.
    4. Bakx, Pieter & Wouterse, Bram & van Doorslaer, Eddy & Wong, Albert, 2020. "Better off at home? Effects of nursing home eligibility on costs, hospitalizations and survival," Journal of Health Economics, Elsevier, vol. 73(C).
    5. van den Berg, Gerard J. & van der Klaauw, Bas, 2001. "Combining micro and macro unemployment duration data," Journal of Econometrics, Elsevier, vol. 102(2), pages 271-309, June.
    6. Herbert Hove & Frank Beichelt & Parmod K. Kapur, 2017. "Estimation of the Frank copula model for dependent competing risks in accelerated life testing," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(4), pages 673-682, December.
    7. Xu, Ke-Li, 2018. "A semi-nonparametric estimator of regression discontinuity design with discrete duration outcomes," Journal of Econometrics, Elsevier, vol. 206(1), pages 258-278.
    8. van den Berg, Gerard J. & Bonev, Petyo & Mammen, Enno, 2016. "Nonparametric Instrumental Variable Methods for Dynamic Treatment Evaluation," IZA Discussion Papers 9782, Institute of Labor Economics (IZA).
    9. Samuel Bentolila & J. Ignacio García-Pérez & Marcel Jansen, 2017. "Are the Spanish long-term unemployed unemployable?," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 8(1), pages 1-41, March.
    10. Simon M. S. Lo & Ralf A. Wilke, 2010. "A copula model for dependent competing risks," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 359-376, March.
    11. Gaure, Simen & Røed, Knut & Westlie, Lars, 2012. "Job search incentives and job match quality," Labour Economics, Elsevier, vol. 19(3), pages 438-450.
    12. Carvalho, José R. & Bierens, Herman J., 2007. "Conditional Treatment and Its Effect on Recidivism," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 27(1), May.
    13. Emura, Takeshi & Hsu, Jiun-Huang, 2020. "Estimation of the Mann–Whitney effect in the two-sample problem under dependent censoring," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    14. Abbring, Jaap H & van den Berg, Gerard J, 2005. "Social experiments and intrumental variables with duration outcomes," Working Paper Series 2005:11, IFAU - Institute for Evaluation of Labour Market and Education Policy.
    15. Petti, Danilo & Eletti, Alessia & Marra, Giampiero & Radice, Rosalba, 2022. "Copula link-based additive models for bivariate time-to-event outcomes with general censoring scheme," Computational Statistics & Data Analysis, Elsevier, vol. 175(C).
    16. Paul Embrechts & Marius Hofert, 2011. "Comments on: Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 263-270, August.
    17. Falavigna Falavigna & Elena Ragazzi & Lisa Sella, "undated". "Vocational training and labour market: inclusion or segregation paths? An integrated approach on immigrant trainees in Piedmont," CERIS Working Paper 201425, CNR-IRCrES Research Institute on Sustainable Economic Growth - Torino (TO) ITALY - former Institute for Economic Research on Firms and Growth - Moncalieri (TO) ITALY.
    18. Gaure, Simen & Roed, Knut & Zhang, Tao, 2007. "Time and causality: A Monte Carlo assessment of the timing-of-events approach," Journal of Econometrics, Elsevier, vol. 141(2), pages 1159-1195, December.
    19. Manudeep Bhuller & Christian N. Brinch & Sebastian Königs, 2017. "Time Aggregation and State Dependence in Welfare Receipt," Economic Journal, Royal Economic Society, vol. 127(604), pages 1833-1873, September.
    20. Jaap Abbring & James Heckman, 2008. "Dynamic policy analysis," CeMMAP working papers CWP05/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:204:y:2025:i:c:s0167947324001889. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.