IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v119y2018icp139-154.html
   My bibliography  Save this article

Data-driven kernel representations for sampling with an unknown block dependence structure under correlation constraints

Author

Listed:
  • Perrin, G.
  • Soize, C.
  • Ouhbi, N.

Abstract

The multidimensional Gaussian kernel-density estimation (G-KDE) is a powerful tool to identify the distribution of random vectors when the maximal information is a set of independent realizations. For these methods, a key issue is the choice of the kernel and the optimization of the bandwidth matrix. To optimize these kernel representations, two adaptations of the classical G-KDE are presented. First, it is proposed to add constraints on the mean and the covariance matrix in the G-KDE formalism. Secondly, it is suggested to separate in different groups the components of the random vector of interest that could reasonably be considered as independent. This block by block decomposition is carried out by looking for the maximum of a cross-validation likelihood quantity that is associated with the block formation. This leads to a tensorized version of the classical G-KDE. Finally, it is shown on a series of examples how these two adaptations can improve the nonparametric representations of the densities of random vectors, especially when the number of available realizations is relatively low compared to their dimensions.

Suggested Citation

  • Perrin, G. & Soize, C. & Ouhbi, N., 2018. "Data-driven kernel representations for sampling with an unknown block dependence structure under correlation constraints," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 139-154.
  • Handle: RePEc:eee:csdana:v:119:y:2018:i:c:p:139-154
    DOI: 10.1016/j.csda.2017.10.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947317302335
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2017.10.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Filippone, Maurizio & Sanguinetti, Guido, 2011. "Approximate inference of the bandwidth in multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3104-3122, December.
    2. Zougab, Nabil & Adjabi, Smail & Kokonendji, Célestin C., 2014. "Bayesian estimation of adaptive bandwidth matrices in multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 28-38.
    3. van der Laan Mark J. & Dudoit Sandrine & Keles Sunduz, 2004. "Asymptotic Optimality of Likelihood-Based Cross-Validation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 3(1), pages 1-25, March.
    4. Tarn Duong & Martin L. Hazelton, 2005. "Cross‐validation Bandwidth Matrices for Multivariate Kernel Density Estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(3), pages 485-506, September.
    5. Zhang, Xibin & King, Maxwell L. & Hyndman, Rob J., 2006. "A Bayesian approach to bandwidth selection for multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3009-3031, July.
    6. Duong, Tarn & Hazelton, Martin L., 2005. "Convergence rates for unconstrained bandwidth matrix selectors in multivariate kernel density estimation," Journal of Multivariate Analysis, Elsevier, vol. 93(2), pages 417-433, April.
    7. Duong, Tarn & Cowling, Arianna & Koch, Inge & Wand, M.P., 2008. "Feature significance for multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4225-4242, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Perrin, G., 2020. "Adaptive calibration of a computer code with time-series output," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    2. Guillaume Perrin & Christian Soize, 2020. "Adaptive method for indirect identification of the statistical properties of random fields in a Bayesian framework," Computational Statistics, Springer, vol. 35(1), pages 111-133, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Filippone, Maurizio & Sanguinetti, Guido, 2011. "Approximate inference of the bandwidth in multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3104-3122, December.
    2. Y. Ziane & S. Adjabi & N. Zougab, 2015. "Adaptive Bayesian bandwidth selection in asymmetric kernel density estimation for nonnegative heavy-tailed data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(8), pages 1645-1658, August.
    3. Yasmina Ziane & Nabil Zougab & Smail Adjabi, 2018. "Birnbaum–Saunders power-exponential kernel density estimation and Bayes local bandwidth selection for nonnegative heavy tailed data," Computational Statistics, Springer, vol. 33(1), pages 299-318, March.
    4. Zougab, Nabil & Adjabi, Smail & Kokonendji, Célestin C., 2014. "Bayesian estimation of adaptive bandwidth matrices in multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 28-38.
    5. Horová, Ivana & Koláček, Jan & Vopatová, Kamila, 2013. "Full bandwidth matrix selectors for gradient kernel density estimate," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 364-376.
    6. Hu, Shuowen & Poskitt, D.S. & Zhang, Xibin, 2012. "Bayesian adaptive bandwidth kernel density estimation of irregular multivariate distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 732-740.
    7. Billings, Stephen B. & Johnson, Erik B., 2012. "A non-parametric test for industrial specialization," Journal of Urban Economics, Elsevier, vol. 71(3), pages 312-331.
    8. Madeleine Cule & Richard Samworth & Michael Stewart, 2010. "Maximum likelihood estimation of a multi‐dimensional log‐concave density," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(5), pages 545-607, November.
    9. Marcus Groß & Ulrich Rendtel & Timo Schmid & Sebastian Schmon & Nikos Tzavidis, 2017. "Estimating the density of ethnic minorities and aged people in Berlin: multivariate kernel density estimation applied to sensitive georeferenced administrative data protected via measurement error," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(1), pages 161-183, January.
    10. Groß, Marcus & Rendtel, Ulrich & Schmid, Timo & Schmon, Sebastian & Tzavidis, Nikos, 2015. "Estimating the density of ethnic minorities and aged people in Berlin: Multivariate kernel density estimation applied to sensitive geo-referenced administrative data protected via measurement error," Discussion Papers 2015/7, Free University Berlin, School of Business & Economics.
    11. Mathieu Langlard & Fabrice Lamadie & Sophie Charton & Johan Debayle, 2021. "Bayesian Inference of a Parametric Random Spheroid from its Orthogonal Projections," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 549-567, June.
    12. Xijian Hu & Yaori Lu & Huiguo Zhang & Haijun Jiang & Qingdong Shi, 2021. "Selection of the Bandwidth Matrix in Spatial Varying Coefficient Models to Detect Anisotropic Regression Relationships," Mathematics, MDPI, vol. 9(18), pages 1-14, September.
    13. Tiee-Jian Wu & Chih-Yuan Hsu & Huang-Yu Chen & Hui-Chun Yu, 2014. "Root $$n$$ n estimates of vectors of integrated density partial derivative functionals," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(5), pages 865-895, October.
    14. Gramacki, Artur & Gramacki, Jarosław, 2017. "FFT-based fast bandwidth selector for multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 27-45.
    15. Sreevani, & Murthy, C.A., 2016. "On bandwidth selection using minimal spanning tree for kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 102(C), pages 67-84.
    16. Catalina Bolance & Montserrat Guillen & David Pitt, 2014. "Non-parametric Models for Univariate Claim Severity Distributions - an approach using R," Working Papers 2014-01, Universitat de Barcelona, UB Riskcenter.
    17. Roberto Rocci & Stefano Antonio Gattone & Roberto Di Mari, 2018. "A data driven equivariant approach to constrained Gaussian mixture modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 235-260, June.
    18. Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    19. Boris Branisa & Adriana Cardozo, 2009. "Regional Growth Convergence in Colombia Using Social Indicators," Ibero America Institute for Econ. Research (IAI) Discussion Papers 195, Ibero-America Institute for Economic Research.
    20. Bruce Desmarais, 2012. "Lessons in disguise: multivariate predictive mistakes in collective choice models," Public Choice, Springer, vol. 151(3), pages 719-737, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:119:y:2018:i:c:p:139-154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.