Probabilistic learning constrained by realizations using a weak formulation of Fourier transform of probability measures
Author
Abstract
Suggested Citation
DOI: 10.1007/s00180-022-01300-w
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Perrin, G. & Soize, C. & Ouhbi, N., 2018. "Data-driven kernel representations for sampling with an unknown block dependence structure under correlation constraints," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 139-154.
- Nicolas Depraetere & Martina Vandebroek, 2017. "A comparison of variational approximations for fast inference in mixed logit models," Computational Statistics, Springer, vol. 32(1), pages 93-125, March.
- repec:dau:papers:123456789/5724 is not listed on IDEAS
- Yuan Shen & Dan Cornford & Manfred Opper & Cedric Archambeau, 2012. "Variational Markov chain Monte Carlo for Bayesian smoothing of non-linear diffusions," Computational Statistics, Springer, vol. 27(1), pages 149-176, March.
- Rajiv Sambasivan & Sourish Das & Sujit K. Sahu, 2020. "A Bayesian perspective of statistical machine learning for big data," Computational Statistics, Springer, vol. 35(3), pages 893-930, September.
- Mark Girolami & Ben Calderhead, 2011. "Riemann manifold Langevin and Hamiltonian Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(2), pages 123-214, March.
- Guillaume Perrin & Christian Soize, 2020. "Adaptive method for indirect identification of the statistical properties of random fields in a Bayesian framework," Computational Statistics, Springer, vol. 35(1), pages 111-133, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ranjan, Rakesh & Sen, Rijji & Upadhyay, Satyanshu K., 2021. "Bayes analysis of some important lifetime models using MCMC based approaches when the observations are left truncated and right censored," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
- Ioannis Bournakis & Mike Tsionas, 2024.
"A Non‐parametric Estimation of Productivity with Idiosyncratic and Aggregate Shocks: The Role of Research and Development (R&D) and Corporate Tax,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(3), pages 641-671, June.
- Bournakis, Ioannis & Tsionas, Mike G., 2023. "A Non-Parametric Estimation of Productivity with Idiosyncratic and Aggregate Shocks: The Role of Research and Development (R&D) and Corporate Tax," MPRA Paper 118100, University Library of Munich, Germany.
- Chen, Zhongfei & Wanke, Peter & Tsionas, Mike G., 2018. "Assessing the strategic fit of potential M&As in Chinese banking: A novel Bayesian stochastic frontier approach," Economic Modelling, Elsevier, vol. 73(C), pages 254-263.
- Atkinson, Scott E. & Tsionas, Mike G., 2021. "Generalized estimation of productivity with multiple bad outputs: The importance of materials balance constraints," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1165-1186.
- Tsionas, Mike G. & Malikov, Emir & Kumbhakar, Subal C., 2020.
"Endogenous dynamic efficiency in the intertemporal optimization models of firm behavior,"
European Journal of Operational Research, Elsevier, vol. 284(1), pages 313-324.
- Tsionas, Mike G. & Malikov, Emir & Kumbhakar, Subal C., 2019. "Endogenous Dynamic Efficiency in the Intertemporal Optimization Models of Firm Behavior," MPRA Paper 97780, University Library of Munich, Germany.
- Raphaël Douady & Shohruh Miryusupov, 2017.
"Hamiltonian Flow Simulation of Rare Events,"
Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers)
hal-01581894, HAL.
- Raphaël Douady & Shohruh Miryusupov, 2017. "Hamiltonian Flow Simulation of Rare Events," Working Papers hal-01581894, HAL.
- Caroline Khan & Mike G. Tsionas, 2021. "Constraints in models of production and cost via slack-based measures," Empirical Economics, Springer, vol. 61(6), pages 3347-3374, December.
- Topaloglou, Nikolas & Tsionas, Mike G., 2020. "Stochastic dominance tests," Journal of Economic Dynamics and Control, Elsevier, vol. 112(C).
- Jia Liu & John M. Maheu & Yong Song, 2024.
"Identification and forecasting of bull and bear markets using multivariate returns,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 723-745, August.
- Liu, Jia & Maheu, John M & Song, Yong, 2023. "Identification and Forecasting of Bull and Bear Markets using Multivariate Returns," MPRA Paper 119515, University Library of Munich, Germany.
- Dimitrakopoulos, Stefanos & Tsionas, Mike, 2019. "Ordinal-response GARCH models for transaction data: A forecasting exercise," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1273-1287.
- Krueger, Rico & Rashidi, Taha H. & Vij, Akshay, 2020. "A Dirichlet process mixture model of discrete choice: Comparisons and a case study on preferences for shared automated vehicles," Journal of choice modelling, Elsevier, vol. 36(C).
- Kutlu, Levent & Mamatzakis, Emmanuel & Tsionas, Mike G., 2022. "A principal–agent approach for estimating firm efficiency: Revealing bank managerial behavior," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).
- De Silva, Dakshina G. & Hubbard, Timothy P. & Schiller, Anita R. & Tsionas, Mike G., 2023. "Estimating outcomes in the presence of endogeneity and measurement error with an application to R&D," The Quarterly Review of Economics and Finance, Elsevier, vol. 88(C), pages 278-294.
- Ying C. MacNab, 2018. "Rejoinder on: Some recent work on multivariate Gaussian Markov random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 554-569, September.
- Vanhatalo, Jarno & Veneranta, Lari & Hudd, Richard, 2012. "Species distribution modeling with Gaussian processes: A case study with the youngest stages of sea spawning whitefish (Coregonus lavaretus L. s.l.) larvae," Ecological Modelling, Elsevier, vol. 228(C), pages 49-58.
- Stephen G. Hall & Heather D. Gibson & G. S. Tavlas & Mike G. Tsionas, 2020. "A Monte Carlo Study of Time Varying Coefficient (TVC) Estimation," Computational Economics, Springer;Society for Computational Economics, vol. 56(1), pages 115-130, June.
- Rubing Liang & Binbin Qin & Qiang Xia, 2024. "Bayesian Inference for Mixed Gaussian GARCH-Type Model by Hamiltonian Monte Carlo Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 63(1), pages 193-220, January.
- Will Penny & Biswa Sengupta, 2016. "Annealed Importance Sampling for Neural Mass Models," PLOS Computational Biology, Public Library of Science, vol. 12(3), pages 1-25, March.
- Kumbhakar, Subal C. & Tsionas, Efthymios G., 2016. "The good, the bad and the technology: Endogeneity in environmental production models," Journal of Econometrics, Elsevier, vol. 190(2), pages 315-327.
- Tore Selland Kleppe, 2016. "Adaptive Step Size Selection for Hessian-Based Manifold Langevin Samplers," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 788-805, September.
More about this item
Keywords
Probabilistic learning; Realizations as targets; Statistical inverse problem; Kullback–Leibler divergence; Uncertainty quantification;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:38:y:2023:i:4:d:10.1007_s00180-022-01300-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.