Reconstruction of Random Fields Concentrated on an Unknown Curve using Irregularly Sampled Data
Author
Abstract
Suggested Citation
DOI: 10.1007/s11009-024-10079-w
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Perrin, G. & Soize, C. & Ouhbi, N., 2018. "Data-driven kernel representations for sampling with an unknown block dependence structure under correlation constraints," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 139-154.
- Duong, Tarn & Cowling, Arianna & Koch, Inge & Wand, M.P., 2008. "Feature significance for multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4225-4242, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Henderson, Daniel J. & Parmeter, Christopher F., 2012.
"Normal reference bandwidths for the general order, multivariate kernel density derivative estimator,"
Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2198-2205.
- Daniel J. Henderson & Christopher F. Parmeter, 2011. "Normal Reference Bandwidths for the General Order, Multivariate Kernel Density Derivative Estimator," Working Papers 2011-15, University of Miami, Department of Economics.
- Christopher R. Genovese & Marco Perone-Pacifico & Isabella Verdinelli & Larry Wasserman, 2016. "Non-parametric inference for density modes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 99-126, January.
- José E. Chacón, 2019. "Mixture model modal clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(2), pages 379-404, June.
- Blanquero, R. & Carrizosa, E. & Jiménez-Cordero, A. & Martín-Barragán, B., 2019. "Functional-bandwidth kernel for Support Vector Machine with Functional Data: An alternating optimization algorithm," European Journal of Operational Research, Elsevier, vol. 275(1), pages 195-207.
- Konstantin Eckle & Nicolai Bissantz & Holger Dette & Katharina Proksch & Sabrina Einecke, 2018. "Multiscale inference for a multivariate density with applications to X-ray astronomy," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(3), pages 647-689, June.
- Cheolwoo Park & Yongho Jeon & Kee-Hoon Kang, 2016. "An exploratory data analysis in scale-space for interval-valued data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(14), pages 2643-2660, October.
- Filippone, Maurizio & Sanguinetti, Guido, 2011. "Approximate inference of the bandwidth in multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3104-3122, December.
- José E. Chacón & Javier Fernández Serrano, 2023. "Bump hunting through density curvature features," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(4), pages 1251-1275, December.
- José E. Chacón, 2020. "The Modal Age of Statistics," International Statistical Review, International Statistical Institute, vol. 88(1), pages 122-141, April.
- Perrin, G., 2020. "Adaptive calibration of a computer code with time-series output," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
- Federico Ferraccioli & Giovanna Menardi, 2023. "Modal clustering of matrix-variate data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(2), pages 323-345, June.
- Lasse Holmström & Leena Pasanen, 2017. "Statistical Scale Space Methods," International Statistical Review, International Statistical Institute, vol. 85(1), pages 1-30, April.
- Guillaume Perrin & Christian Soize, 2020. "Adaptive method for indirect identification of the statistical properties of random fields in a Bayesian framework," Computational Statistics, Springer, vol. 35(1), pages 111-133, March.
- Jose Ameijeiras-Alonso & Jochen Einbeck, 2024. "A fresh look at mean-shift based modal clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(4), pages 1067-1095, December.
- Alessandro Casa & Giovanna Menardi, 2022. "Nonparametric semi-supervised classification with application to signal detection in high energy physics," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 531-550, September.
- Christian Soize, 2023. "Probabilistic learning constrained by realizations using a weak formulation of Fourier transform of probability measures," Computational Statistics, Springer, vol. 38(4), pages 1879-1925, December.
- Horová, Ivana & Koláček, Jan & Vopatová, Kamila, 2013. "Full bandwidth matrix selectors for gradient kernel density estimate," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 364-376.
- Lasse Holmström & Kyösti Karttunen & Jussi Klemelä, 2017. "Estimation of level set trees using adaptive partitions," Computational Statistics, Springer, vol. 32(3), pages 1139-1163, September.
- Perrin, G. & Soize, C. & Ouhbi, N., 2018. "Data-driven kernel representations for sampling with an unknown block dependence structure under correlation constraints," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 139-154.
More about this item
Keywords
Statistical inference; Manifold learning; Nonparametric representation; Data-driven sampling;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:26:y:2024:i:1:d:10.1007_s11009-024-10079-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.