IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v32y2023i4d10.1007_s11749-023-00872-z.html
   My bibliography  Save this article

Bump hunting through density curvature features

Author

Listed:
  • José E. Chacón

    (Universidad de Extremadura)

  • Javier Fernández Serrano

    (Universidad Autónoma de Madrid)

Abstract

Bump hunting deals with finding in sample spaces meaningful data subsets known as bumps. These have traditionally been conceived as modal or concave regions in the graph of the underlying density function. We define an abstract bump construct based on curvature functionals of the probability density. Then, we explore several alternative characterizations involving derivatives up to second order. In particular, a suitable implementation of Good and Gaskins’ original concave bumps is proposed in the multivariate case. Moreover, we bring to exploratory data analysis concepts like the mean curvature and the Laplacian that have produced good results in applied domains. Our methodology addresses the approximation of the curvature functional with a plug-in kernel density estimator. We provide theoretical results that assure the asymptotic consistency of bump boundaries in the Hausdorff distance with affordable convergence rates. We also present asymptotically valid and consistent confidence regions bounding curvature bumps. The theory is illustrated through several use cases in sports analytics with datasets from the NBA, MLB and NFL. We conclude that the different curvature instances effectively combine to generate insightful visualizations.

Suggested Citation

  • José E. Chacón & Javier Fernández Serrano, 2023. "Bump hunting through density curvature features," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(4), pages 1251-1275, December.
  • Handle: RePEc:spr:testjl:v:32:y:2023:i:4:d:10.1007_s11749-023-00872-z
    DOI: 10.1007/s11749-023-00872-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-023-00872-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-023-00872-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mammen, Enno & Polonik, Wolfgang, 2013. "Confidence regions for level sets," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 202-214.
    2. Yen-Chi Chen & Christopher R. Genovese & Larry Wasserman, 2017. "Density Level Sets: Asymptotics, Inference, and Visualization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1684-1696, October.
    3. Duong, Tarn & Cowling, Arianna & Koch, Inge & Wand, M.P., 2008. "Feature significance for multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4225-4242, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paula Saavedra-Nieves & Rosa M. Crujeiras, 2022. "Nonparametric estimation of directional highest density regions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(3), pages 761-796, September.
    2. Henderson, Daniel J. & Parmeter, Christopher F., 2012. "Normal reference bandwidths for the general order, multivariate kernel density derivative estimator," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2198-2205.
    3. Christopher R. Genovese & Marco Perone-Pacifico & Isabella Verdinelli & Larry Wasserman, 2016. "Non-parametric inference for density modes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 99-126, January.
    4. Guillaume Perrin & Christian Soize, 2024. "Reconstruction of Random Fields Concentrated on an Unknown Curve using Irregularly Sampled Data," Methodology and Computing in Applied Probability, Springer, vol. 26(1), pages 1-20, March.
    5. José E. Chacón, 2019. "Mixture model modal clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(2), pages 379-404, June.
    6. Merlo, Luca & Petrella, Lea & Salvati, Nicola & Tzavidis, Nikos, 2022. "Marginal M-quantile regression for multivariate dependent data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    7. Blanquero, R. & Carrizosa, E. & Jiménez-Cordero, A. & Martín-Barragán, B., 2019. "Functional-bandwidth kernel for Support Vector Machine with Functional Data: An alternating optimization algorithm," European Journal of Operational Research, Elsevier, vol. 275(1), pages 195-207.
    8. Konstantin Eckle & Nicolai Bissantz & Holger Dette & Katharina Proksch & Sabrina Einecke, 2018. "Multiscale inference for a multivariate density with applications to X-ray astronomy," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(3), pages 647-689, June.
    9. Cheolwoo Park & Yongho Jeon & Kee-Hoon Kang, 2016. "An exploratory data analysis in scale-space for interval-valued data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(14), pages 2643-2660, October.
    10. Filippone, Maurizio & Sanguinetti, Guido, 2011. "Approximate inference of the bandwidth in multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3104-3122, December.
    11. Christian M Dahl & Martin Huber & Giovanni Mellace, 2023. "It is never too LATE: a new look at local average treatment effects with or without defiers," The Econometrics Journal, Royal Economic Society, vol. 26(3), pages 378-404.
    12. Cholaquidis, Alejandro & Fraiman, Ricardo & Moreno, Leonardo, 2022. "Level set and density estimation on manifolds," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    13. Berthet, Philippe & Einmahl, John, 2020. "Cube Root Weak Convergence of Empirical Estimators of a Density Level Set," Discussion Paper 2020-015, Tilburg University, Center for Economic Research.
    14. Dau, Hai Dang & Laloë, Thomas & Servien, Rémi, 2020. "Exact asymptotic limit for kernel estimation of regression level sets," Statistics & Probability Letters, Elsevier, vol. 161(C).
    15. José E. Chacón, 2020. "The Modal Age of Statistics," International Statistical Review, International Statistical Institute, vol. 88(1), pages 122-141, April.
    16. Federico Ferraccioli & Giovanna Menardi, 2023. "Modal clustering of matrix-variate data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(2), pages 323-345, June.
    17. Lasse Holmström & Leena Pasanen, 2017. "Statistical Scale Space Methods," International Statistical Review, International Statistical Institute, vol. 85(1), pages 1-30, April.
    18. Yen-Chi Chen & Christopher R. Genovese & Larry Wasserman, 2017. "Density Level Sets: Asymptotics, Inference, and Visualization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1684-1696, October.
    19. Aneiros, Germán & Horová, Ivana & Hušková, Marie & Vieu, Philippe, 2022. "On functional data analysis and related topics," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    20. Xiaochun Meng & James W. Taylor & Souhaib Ben Taieb & Siran Li, 2020. "Scores for Multivariate Distributions and Level Sets," Papers 2002.09578, arXiv.org, revised Jun 2023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:32:y:2023:i:4:d:10.1007_s11749-023-00872-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.