IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v43y2016i14p2643-2660.html
   My bibliography  Save this article

An exploratory data analysis in scale-space for interval-valued data

Author

Listed:
  • Cheolwoo Park
  • Yongho Jeon
  • Kee-Hoon Kang

Abstract

We propose an exploratory data analysis approach when data are observed as intervals in a nonparametric regression setting. The interval-valued data contain richer information than single-valued data in the sense that they provide both center and range information of the underlying structure. Conventionally, these two attributes have been studied separately as traditional tools can be readily used for single-valued data analysis. We propose a unified data analysis tool that attempts to capture the relationship between response and covariate by simultaneously accounting for variability present in the data. It utilizes a kernel smoothing approach, which is conducted in scale-space so that it considers a wide range of smoothing parameters rather than selecting an optimal value. It also visually summarizes the significance of trends in the data as a color map across multiple locations and scales. We demonstrate its effectiveness as an exploratory data analysis tool for interval-valued data using simulated and real examples.

Suggested Citation

  • Cheolwoo Park & Yongho Jeon & Kee-Hoon Kang, 2016. "An exploratory data analysis in scale-space for interval-valued data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(14), pages 2643-2660, October.
  • Handle: RePEc:taf:japsta:v:43:y:2016:i:14:p:2643-2660
    DOI: 10.1080/02664763.2016.1142947
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2016.1142947
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2016.1142947?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blanco-Fernández, Angela & Corral, Norberto & González-Rodríguez, Gil, 2011. "Estimation of a flexible simple linear model for interval data based on set arithmetic," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2568-2578, September.
    2. Sørbye, Sigrunn H. & Hindberg, Kristian & Olsen, Lena R. & Rue, Håvard, 2009. "Bayesian multiscale feature detection of log-spectral densities," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3746-3754, September.
    3. Billard L. & Diday E., 2003. "From the Statistics of Data to the Statistics of Knowledge: Symbolic Data Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 470-487, January.
    4. Hannig, J. & Marron, J.S., 2006. "Advanced Distribution Theory for SiZer," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 484-499, June.
    5. Park, Cheolwoo & Huh, Jib, 2013. "Statistical inference and visualization in scale-space using local likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 336-348.
    6. Lima Neto, Eufrasio de A. & de Carvalho, Francisco de A.T., 2008. "Centre and Range method for fitting a linear regression model to symbolic interval data," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1500-1515, January.
    7. Park, Cheolwoo & Godtliebsen, Fred & Taqqu, Murad & Stoev, Stilian & Marron, J.S., 2007. "Visualization and inference based on wavelet coefficients, SiZer and SiNos," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5994-6012, August.
    8. Lima Neto, Eufrásio de A. & de Carvalho, Francisco de A.T., 2010. "Constrained linear regression models for symbolic interval-valued variables," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 333-347, February.
    9. Park, Cheolwoo & Kang, Kee-Hoon, 2008. "SiZer analysis for the comparison of regression curves," Computational Statistics & Data Analysis, Elsevier, vol. 52(8), pages 3954-3970, April.
    10. Godtliebsen, Fred & Oigard, Tor Arne, 2005. "A visual display device for significant features in complicated signals," Computational Statistics & Data Analysis, Elsevier, vol. 48(2), pages 317-343, February.
    11. Oigard, Tor Arne & Rue, Havard & Godtliebsen, Fred, 2006. "Bayesian multiscale analysis for time series data," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1719-1730, December.
    12. Cheolwoo Park & J. S. Marron & Vitaliana Rondonotti, 2004. "Dependent SiZer: Goodness-of-Fit Tests for Time Series Models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(8), pages 999-1017.
    13. Duong, Tarn & Cowling, Arianna & Koch, Inge & Wand, M.P., 2008. "Feature significance for multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4225-4242, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheolwoo Park & Yongho Jeon & Kee-Hoon Kang, 2017. "Discussion," International Statistical Review, International Statistical Institute, vol. 85(1), pages 33-35, April.
    2. Marta García-Bárzana & Ana Belén Ramos-Guajardo & Ana Colubi & Erricos J. Kontoghiorghes, 2020. "Multiple linear regression models for random intervals: a set arithmetic approach," Computational Statistics, Springer, vol. 35(2), pages 755-773, June.
    3. Lasse Holmström & Leena Pasanen, 2017. "Rejoinder," International Statistical Review, International Statistical Institute, vol. 85(1), pages 43-45, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lasse Holmström & Leena Pasanen, 2017. "Statistical Scale Space Methods," International Statistical Review, International Statistical Institute, vol. 85(1), pages 1-30, April.
    2. Huh, Jib & Park, Cheolwoo, 2015. "Theoretical investigation of an exploratory approach for log-density in scale-space," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 272-279.
    3. Park, Cheolwoo & Huh, Jib, 2013. "Statistical inference and visualization in scale-space using local likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 336-348.
    4. Paolo Giordani, 2015. "Lasso-constrained regression analysis for interval-valued data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(1), pages 5-19, March.
    5. Hao, Peng & Guo, Junpeng, 2017. "Constrained center and range joint model for interval-valued symbolic data regression," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 106-138.
    6. Yan Sun & Guanghua Lian & Zudi Lu & Jennifer Loveland & Isaac Blackhurst, 2020. "Modeling the Variance of Return Intervals Toward Volatility Prediction," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(4), pages 492-519, July.
    7. Wei Yang & Ai Han & Yongmiao Hong & Shouyang Wang, 2016. "Analysis of crisis impact on crude oil prices: a new approach with interval time series modelling," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1917-1928, December.
    8. Eufr�sio de A. Lima Neto & Ulisses U. dos Anjos, 2015. "Regression model for interval-valued variables based on copulas," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(9), pages 2010-2029, September.
    9. A. Pedro Duarte Silva & Peter Filzmoser & Paula Brito, 2018. "Outlier detection in interval data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 785-822, September.
    10. Sun, Yuying & Han, Ai & Hong, Yongmiao & Wang, Shouyang, 2018. "Threshold autoregressive models for interval-valued time series data," Journal of Econometrics, Elsevier, vol. 206(2), pages 414-446.
    11. Maia, André Luis Santiago & de Carvalho, Francisco de A.T., 2011. "Holt's exponential smoothing and neural network models for forecasting interval-valued time series," International Journal of Forecasting, Elsevier, vol. 27(3), pages 740-759, July.
    12. Sun, Yuying & Zhang, Xinyu & Wan, Alan T.K. & Wang, Shouyang, 2022. "Model averaging for interval-valued data," European Journal of Operational Research, Elsevier, vol. 301(2), pages 772-784.
    13. Maia, André Luis Santiago & de Carvalho, Francisco de A.T., 2011. "Holt’s exponential smoothing and neural network models for forecasting interval-valued time series," International Journal of Forecasting, Elsevier, vol. 27(3), pages 740-759.
    14. Lin, Wei & González-Rivera, Gloria, 2016. "Interval-valued time series models: Estimation based on order statistics exploring the Agriculture Marketing Service data," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 694-711.
    15. Karel Hron & Paula Brito & Peter Filzmoser, 2017. "Exploratory data analysis for interval compositional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(2), pages 223-241, June.
    16. Antonio Calcagnì & Luigi Lombardi & Lorenzo Avanzi & Eduardo Pascali, 2020. "Multiple mediation analysis for interval-valued data," Statistical Papers, Springer, vol. 61(1), pages 347-369, February.
    17. Carlo Drago & Roberto Ricciuti, 2019. "An interval variables approach to address measurement uncertainty in governance indicators," Economics Bulletin, AccessEcon, vol. 39(1), pages 626-635.
    18. Dias, Sónia & Brito, Paula, 2017. "Off the beaten track: A new linear model for interval data," European Journal of Operational Research, Elsevier, vol. 258(3), pages 1118-1130.
    19. Chang, Meng-Shiuh & Ju, Peijie & Liu, Yilei & Hsueh, Shao-Chieh, 2022. "Determining hedges and safe havens for stocks using interval analysis," The North American Journal of Economics and Finance, Elsevier, vol. 61(C).
    20. Henning Fischer & Ángela Blanco‐FERNÁndez & Peter Winker, 2016. "Predicting Stock Return Volatility: Can We Benefit from Regression Models for Return Intervals?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(2), pages 113-146, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:43:y:2016:i:14:p:2643-2660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.