IDEAS home Printed from
   My bibliography  Save this article

Statistical inference and visualization in scale-space using local likelihood


  • Park, Cheolwoo
  • Huh, Jib


SiZer (SIgnificant ZERo crossing of the derivatives) is a graphical scale-space visualization tool that allows for exploratory data analysis with statistical inference. Various SiZer tools have been developed in the last decade, but most of them are not appropriate when the response variable takes discrete values. In this paper, we develop a SiZer for finding significant features using a local likelihood approach with local polynomial estimators. This tool improves the existing one (Li and Marron, 2005) by proposing a theoretically justified quantile in a confidence interval using advanced distribution theory. In addition, we investigate the asymptotic properties of the proposed tool. We conduct a numerical study to demonstrate the sample performance of SiZer using Bernoulli and Poisson models using simulated and real examples.

Suggested Citation

  • Park, Cheolwoo & Huh, Jib, 2013. "Statistical inference and visualization in scale-space using local likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 336-348.
  • Handle: RePEc:eee:csdana:v:57:y:2013:i:1:p:336-348
    DOI: 10.1016/j.csda.2012.06.023

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, April.
    2. Sørbye, Sigrunn H. & Hindberg, Kristian & Olsen, Lena R. & Rue, Håvard, 2009. "Bayesian multiscale feature detection of log-spectral densities," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3746-3754, September.
    3. Cheolwoo Park & J. S. Marron & Vitaliana Rondonotti, 2004. "Dependent SiZer: Goodness-of-Fit Tests for Time Series Models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(8), pages 999-1017.
    4. Hannig, J. & Marron, J.S., 2006. "Advanced Distribution Theory for SiZer," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 484-499, June.
    5. Huh, Jib, 2010. "Detection of a change point based on local-likelihood," Journal of Multivariate Analysis, Elsevier, vol. 101(7), pages 1681-1700, August.
    6. Park, Cheolwoo & Kang, Kee-Hoon, 2008. "SiZer analysis for the comparison of regression curves," Computational Statistics & Data Analysis, Elsevier, vol. 52(8), pages 3954-3970, April.
    7. Huh, J. & Park, B. U., 2002. "Likelihood-Based Local Polynomial Fitting for Single-Index Models," Journal of Multivariate Analysis, Elsevier, vol. 80(2), pages 302-321, February.
    8. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, April.
    9. Godtliebsen, Fred & Oigard, Tor Arne, 2005. "A visual display device for significant features in complicated signals," Computational Statistics & Data Analysis, Elsevier, vol. 48(2), pages 317-343, February.
    10. Pollard, David, 1991. "Asymptotics for Least Absolute Deviation Regression Estimators," Econometric Theory, Cambridge University Press, vol. 7(02), pages 186-199, June.
    11. Oigard, Tor Arne & Rue, Havard & Godtliebsen, Fred, 2006. "Bayesian multiscale analysis for time series data," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1719-1730, December.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Huh, Jib & Park, Cheolwoo, 2015. "Theoretical investigation of an exploratory approach for log-density in scale-space," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 272-279.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:57:y:2013:i:1:p:336-348. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.